ﻻ يوجد ملخص باللغة العربية
Spin accumulation voltages in a non-degenerate Si spin valve are discussed quantitatively as a function of electric bias current using systematic experiments and model calculations. As an open question in semiconductor spintronics, the origin of the deviation of spin accumulation voltages measured experimentally in a non-degenerate Si spin valve is clarified from that obtained by model calculation using the spin drift diffusion equation including the effect of the spin-dependent interfacial resistance of tunneling barriers. Unlike the case of metallic spin valves, the bias dependence of the resistance-area product for a ferromagnet/MgO/Si interface, resulting in the reappearance of the conductance mismatch, plays a central role to induce the deviation.
We find extraordinary behavior of the local two-terminal spin accumulation signals in ferromagnet (FM)/semiconductor (SC) lateral spin-valve devices. With respect to the bias voltage applied between two FM/SC Schottky tunnel contacts, the local spin-
Spin transport in non-degenerate semiconductors is expected to pave a way to the creation of spin transistors, spin logic devices and reconfigurable logic circuits, because room temperature (RT) spin transport in Si has already been achieved. However
Competition between superconducting and ferromagnetic ordering at interfaces between ferromagnets (F) and superconductors (S) gives rise to several proximity effects such as odd-triplet superconductivity and spin-polarized supercurrents. A prominent
We have measured the transport properties of Ferromagnet - Superconductor nanostructures, where two superconducting aluminum (Al) electrodes are connected through two ferromagnetic iron (Fe) ellipsoids in parallel. We find that, below the superconduc
We report the observation of the spin valve effect in (Ga,Mn)As/p-GaAs/(Ga,Mn)As trilayer devices. Magnetoresistance measurements carried out in the current in plane geometry reveal positive magnetoresistance peaks when the two ferromagnetic layers a