ﻻ يوجد ملخص باللغة العربية
Cardinality constrained submodular function maximization, which aims to select a subset of size at most $k$ to maximize a monotone submodular utility function, is the key in many data mining and machine learning applications such as data summarization and maximum coverage problems. When data is given as a stream, streaming submodular optimization (SSO) techniques are desired. Existing SSO techniques can only apply to insertion-only streams where each element has an infinite lifespan, and sliding-window streams where each element has a same lifespan (i.e., window size). However, elements in some data streams may have arbitrary different lifespans, and this requires addressing SSO over streams with inhomogeneous-decays (SSO-ID). This work formulates the SSO-ID problem and presents three algorithms: BasicStreaming is a basic streaming algorithm that achieves an $(1/2-epsilon)$ approximation factor; HistApprox improves the efficiency significantly and achieves an $(1/3-epsilon)$ approximation factor; HistStreaming is a streaming version of HistApprox and uses heuristics to further improve the efficiency. Experiments conducted on real data demonstrate that HistStreaming can find high quality solutions and is up to two orders of magnitude faster than the naive Greedy algorithm.
Submodular continuous functions are a category of (generally) non-convex/non-concave functions with a wide spectrum of applications. We characterize these functions and demonstrate that they can be maximized efficiently with approximation guarantees.
In the submodular cover problem, we are given a non-negative monotone submodular function $f$ over a ground set $E$ of items, and the goal is to choose a smallest subset $S subseteq E$ such that $f(S) = Q$ where $Q = f(E)$. In the stochastic version
In this paper we study the fundamental problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine
Submodular function minimization (SFM) is a fundamental discrete optimization problem which generalizes many well known problems, has applications in various fields, and can be solved in polynomial time. Owing to applications in computer vision and m
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / varepsilon^2)$ memory, where