ﻻ يوجد ملخص باللغة العربية
Submodular continuous functions are a category of (generally) non-convex/non-concave functions with a wide spectrum of applications. We characterize these functions and demonstrate that they can be maximized efficiently with approximation guarantees. Specifically, i) We introduce the weak DR property that gives a unified characterization of submodularity for all set, integer-lattice and continuous functions; ii) for maximizing monotone DR-submodular continuous functions under general down-closed convex constraints, we propose a Frank-Wolfe variant with $(1-1/e)$ approximation guarantee, and sub-linear convergence rate; iii) for maximizing general non-monotone submodular continuous functions subject to box constraints, we propose a DoubleGreedy algorithm with $1/3$ approximation guarantee. Submodular continuous functions naturally find applications in various real-world settings, including influence and revenue maximization with continuous assignments, sensor energy management, multi-resolution data summarization, facility location, etc. Experimental results show that the proposed algorithms efficiently generate superior solutions compared to baseline algorithms.
Continuous submodular functions are a category of generally non-convex/non-concave functions with a wide spectrum of applications. The celebrated property of this class of functions - continuous submodularity - enables both exact minimization and app
We study the problem of maximizing a non-monotone submodular function under multiple knapsack constraints. We propose a simple discrete greedy algorithm to approach this problem, and prove that it yields strong approximation guarantees for functions
In this paper we study the fundamental problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine
Many large-scale machine learning problems--clustering, non-parametric learning, kernel machines, etc.--require selecting a small yet representative subset from a large dataset. Such problems can often be reduced to maximizing a submodular set functi
Profit maximization (PM) is to select a subset of users as seeds for viral marketing in online social networks, which balances between the cost and the profit from influence spread. We extend PM to that under the general marketing strategy, and form