ﻻ يوجد ملخص باللغة العربية
We consider properties of the inhomogeneous solution found recently for mbox{$mathbb{CP}^{,N-1}$} model. The solution was interpreted as a soliton. We reevaluate its energy in three different ways and find that it is negative contrary to the previous claims. Hence, instead of the solitonic interpretation it calls for reconsideration of the issue of the true ground state. While complete resolution is still absent we show that the energy density of the periodic elliptic solution is lower than the energy density of the homogeneous ground state. We also discuss similar solutions for the ${mathbb{O}}(N)$ model and for SUSY extensions.
In order to check the validity and the range of applicability of the 1/N expansion, we performed numerical simulations of the two-dimensional lattice CP(N-1) models at large N, in particular we considered the CP(20) and the CP(40) models. Quantitativ
Three related analyses of $phi^4$ theory with $O(N)$ symmetry are presented. In the first, we review the $O(N)$ model over the $p$-adic numbers and the discrete renormalization group transformations which can be understood as spin blocking in an ultr
We analyze the two-dimensional CP(N-1) sigma model defined on a finite space interval L, with various boundary conditions, in the large N limit. With the Dirichlet boundary condition at the both ends, we show that the system has a unique phase, which
It has recently been demonstrated that the large N limit of a model of fermions charged under the global/gauge symmetry group $O(N)^{q-1}$ agrees with the large $N$ limit of the SYK model. In these notes we investigate aspects of the dynamics of the
We compute the OPE coefficients of the bosonic tensor model of cite{Benedetti:2019eyl} for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary te