ﻻ يوجد ملخص باللغة العربية
It has recently been demonstrated that the large N limit of a model of fermions charged under the global/gauge symmetry group $O(N)^{q-1}$ agrees with the large $N$ limit of the SYK model. In these notes we investigate aspects of the dynamics of the $O(N)^{q-1}$ theories that differ from their SYK counterparts. We argue that the spectrum of fluctuations about the finite temperature saddle point in these theories has $(q-1)frac{N^2}{2}$ new light modes in addition to the light Schwarzian mode that exists even in the SYK model, suggesting that the bulk dual description of theories differ significantly if they both exist. We also study the thermal partition function of a mass deformed version of the SYK model. At large mass we show that the effective entropy of this theory grows with energy like $E ln E$ (i.e. faster than Hagedorn) up to energies of order $N^2$. The canonical partition function of the model displays a deconfinement or Hawking Page type phase transition at temperatures of order $1/ln N$. We derive these results in the large mass limit but argue that they are qualitatively robust to small corrections in $J/m$.
The SYK model has a wormhole-like solution after averaging over the fermionic coupling in the nearly $AdS_2$ space. Even when the couplings are fixed the contribution of these wormholes continues to exist and new saddle points appear which are interp
We consider a chain of Abelian Klebanov-Tarnopolsky fermionic tensor models coupled through quartic nearest-neighbor interactions. We characterize the gauge-singlet spectrum for small chains ($L=2,3,4,5$) and observe that the spectral statistics exhi
We explore in detail the properties of two melonic quantum mechanical theories which can be formulated either as fermionic matrix quantum mechanics in the new large $D$ limit, or as disordered models. Both models have a mass parameter $m$ and the tra
Tensor models are natural generalizations of matrix models. The interactions and observables in the case of unitary invariant models are generalizations of matrix traces. Some notable interactions in the literature include the melonic ones, the tetra
We consider properties of the inhomogeneous solution found recently for mbox{$mathbb{CP}^{,N-1}$} model. The solution was interpreted as a soliton. We reevaluate its energy in three different ways and find that it is negative contrary to the previous