ترغب بنشر مسار تعليمي؟ اضغط هنا

Advances in sequential measurement and control of open quantum systems

175   0   0.0 ( 0 )
 نشر من قبل Stefano Gherardini
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Novel concepts, perspectives and challenges in measuring and controlling an open quantum system via sequential schemes are shown. We discuss how similar protocols, relying both on repeated quantum measurements and dynamical decoupling control pulses, can allow to: (i) Confine and protect quantum dynamics from decoherence in accordance with the Zeno physics. (ii) Analytically predict the probability that a quantum system is transferred into a target quantum state by means of stochastic sequential measurements. (iii) Optimally reconstruct the spectral density of environmental noise sources by orthogonalizing in the frequency domain the filter functions driving the designed quantum-sensor. The achievement of these tasks will enhance our capability to observe and manipulate open quantum systems, thus bringing advances to quantum science and technologies.



قيم البحث

اقرأ أيضاً

Quantum technology resorts to efficient utilization of quantum resources to realize technique innovation. The systems are controlled such that their states follow the desired manners to realize different quantum protocols. However, the decoherence ca used by the system-environment interactions causes the states deviating from the desired manners. How to protect quantum resources under the coexistence of active control and passive decoherence is of significance. Recent studies have revealed that the decoherence is determined by the feature of the system-environment energy spectrum: Accompanying the formation of bound states in the energy spectrum, the decoherence can be suppressed. It supplies a guideline to control decoherence. Such idea can be generalized to systems under periodic driving. By virtue of manipulating Floquet bound states in the quasienergy spectrum, coherent control via periodic driving dubbed as Floquet engineering has become a versatile tool not only in controlling decoherence, but also in artificially synthesizing exotic topological phases. We will review the progress on quantum control in open and periodically driven systems. Special attention will be paid to the distinguished role played by the bound states and their controllability via periodic driving in suppressing decoherence and generating novel topological phases.
We study protective quantum measurements in the presence of an environment and decoherence. We consider the model of a protectively measured qubit that also interacts with a spin environment during the measurement. We investigate how the coupling to the environment affects the two characteristic properties of a protective measurement, namely, (i) the ability to leave the state of the system approximately unchanged and (ii) the transfer of information about expectation values to the apparatus pointer. We find that even when the interaction with the environment is weak enough not to lead to appreciable decoherence of the initial qubit state, it causes a significant broadening of the probability distribution for the position of the apparatus pointer at the conclusion of the measurement. This washing out of the pointer position crucially diminishes the accuracy with which the desired expectation values can be measured from a readout of the pointer. We additionally show that even when the coupling to the environment is chosen such that the state of the system is immune to decoherence, the environment may still detrimentally affect the pointer readout.
136 - Daoyi Dong 2021
This paper provides a brief introduction to learning control of quantum systems. In particular, the following aspects are outlined, including gradient-based learning for optimal control of quantum systems, evolutionary computation for learning contro l of quantum systems, learning-based quantum robust control, and reinforcement learning for quantum control.
This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quant um Wiener process, and the controller is a linear time invariant system governed by a stochastic differential equation. The control objective is to stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential functional (QEF) which penalizes the plant variables and the controller output. We combine a frequency-domain representation of the QEF growth rate, obtained recently, with variational techniques and establish first-order necessary conditions of optimality for the state-space matrices of the controller.
A Lyapunov-based method is presented for stabilizing and controlling of closed quantum systems. The proposed method is constructed upon a novel quantum Lyapunov function of the system state trajectory tracking error. A positive-definite operator in t he Lyapunov function provides additional degrees of freedom for the designer. The stabilization process is analyzed regarding two distinct cases for this operator in terms of its vanishing or non-vanishing commutation with the Hamiltonian operator of the undriven quantum system. To cope with the global phase invariance of quantum states as a result of the quantum projective measurement postulate, equivalence classes of quantum states are defined and used in the proposed Lyapunov-based analysis and design. Results show significant improvement in both the set of stabilizable quantum systems and their invariant sets of state trajectories generated by designed control signals. The proposed method can potentially be applied for high-fidelity quantum control purposes in quantum computing frameworks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا