ﻻ يوجد ملخص باللغة العربية
This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quantum Wiener process, and the controller is a linear time invariant system governed by a stochastic differential equation. The control objective is to stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic-exponential functional (QEF) which penalizes the plant variables and the controller output. We combine a frequency-domain representation of the QEF growth rate, obtained recently, with variational techniques and establish first-order necessary conditions of optimality for the state-space matrices of the controller.
This paper is concerned with quadratic-exponential functionals (QEFs) as risk-sensitive performance criteria for linear quantum stochastic systems driven by multichannel bosonic fields. Such costs impose an exponential penalty on quadratic functions
This paper is concerned with multimode open quantum harmonic oscillators and quadratic-exponential functionals (QEFs) as quantum risk-sensitive performance criteria. Such systems are described by linear quantum stochastic differential equations drive
This paper is concerned with exponential moments of integral-of-quadratic functions of quantum processes with canonical commutation relations of position-momentum type. Such quadratic-exponential functionals (QEFs) arise as robust performance criteri
In this paper, we formulate and solve a guaranteed cost control problem for a class of uncertain linear stochastic quantum systems. For these quantum systems, a connection with an associated classical (non-quantum) system is first established. Using
We consider the problem of robust and adaptive model predictive control (MPC) of a linear system, with unknown parameters that are learned along the way (adaptive), in a critical setting where failures must be prevented (robust). This problem has bee