ﻻ يوجد ملخص باللغة العربية
Time-dependent $mathcal{PT}$-symmetric quantum mechanics is featured by a varying inner-product metric and has stimulated a number of interesting studies beyond conventional quantum mechanics. In this paper, we explore geometric aspects of time-dependent $mathcal{PT}$-symmetric quantum mechanics. We not only find a geometric phase factor emerging naturally from cyclic evolutions of $mathcal{PT}$-symmetric systems, but also formulate a series of differential geometry concepts, including connection, curvature, parallel transport, metric tensor, and quantum geometric tensor. Our findings constitute a useful, perhaps indispensible, tool to tackle physical problems involving $mathcal{PT}$-symmetric systems with time-varying systems parameters. To exemplify the application of our findings, we show that the unconventional geometrical phase [Phys. Rev. Lett. 91, 187902 (2003)], consisting of a geometric phase and a dynamical phase proportional to the geometric phase, can be expressed as a single geometric phase identified in this work.
$mathcal{PT}$-symmetric quantum mechanics has been considered an important theoretical framework for understanding physical phenomena in $mathcal{PT}$-symmetric systems, with a number of $mathcal{PT}$-symmetry related applications. This line of resea
A series of geometric concepts are formulated for $mathcal{PT}$-symmetric quantum mechanics and they are further unified into one entity, i.e., an extended quantum geometric tensor (QGT). The imaginary part of the extended QGT gives a Berry curvature
Recently, much research has been carried out on Hamiltonians that are not Hermitian but are symmetric under space-time reflection, that is, Hamiltonians that exhibit PT symmetry. Investigations of the Sturm-Liouville eigenvalue problem associated wit
Over the past decade, non-Hermitian, $mathcal{PT}$-symmetric Hamiltonians have been investigated as candidates for both, a fundamental, unitary, quantum theory, and open systems with a non-unitary time evolution. In this paper, we investigate the imp
We theoretically study the dynamics of typical optomechanical systems, consisting of a passive optical mode and an active mechanical mode, in the $mathcal{PT}$- and broken-$mathcal{PT}$-symmetric regimes. By fully analytical treatments for the dynami