ﻻ يوجد ملخص باللغة العربية
The microscopic process of oxidative etching of two-dimensional molybdenum disulfide (2D MoS2) at an atomic scale is investigated using a correlative TEM-etching study. MoS2 flakes on graphene TEM grids are precisely tracked and characterized by TEM before and after the oxidative etching. This allows us to determine the structural change with an atomic resolution on the edges of the domains, of well-oriented triangular pits and along the grain boundaries. We observe that the etching mostly starts from the open edges, grain boundaries and pre-existing atomic defects. A zigzag Mo edge is assigned as the dominant termination of the triangular pits, and profound terraces and grooves are observed on the etched edges. Based on the statistical TEM analysis, we reveal possible routes for the kinetics of the oxidative etching in 2D MoS2, which should also be applicable for other 2D transition metal dichalcogenide materials like MoSe2 and WS2.
Edge structures are highly relevant to the electronic, magnetic and catalytic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) and their one dimensional (1D) counterpart, i.e., nanoribbons, which should be precisely tailored
Doping is an effective way to modify the electronic property of two-dimensional (2D) materials and endow them with new functionalities. However, wide-range control of the substitutional doping concentration with large scale uniformity remains challen
Monolayer transition metal dichalcogenides (TMDCs) are two-dimensional (2D) materials with many potential applications. Chemical vapour deposition (CVD) is a promising method to synthesize these materials. However, CVD-grown materials generally have
Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic, opto-electronic and spintronic applications. However, demonstrating spin-transport through a semiconducting MoS2 channel is challeng
We study charge transport in a monolayer molybdenum disulfide nanoflake over a wide range of carrier density, temperature, and electric bias. We find that the transport is best described by a percolating picture in which the disorder breaks translati