ﻻ يوجد ملخص باللغة العربية
Edge structures are highly relevant to the electronic, magnetic and catalytic properties of two-dimensional (2D) transition metal dichalcogenides (TMDs) and their one dimensional (1D) counterpart, i.e., nanoribbons, which should be precisely tailored for the desirable applications. In this work, we report the formation of novel Mo6S6 nanowire (NW) terminated edges in a monolayer molybdenum disulfide (MoS2) via an e-beam irradiation process combined with high temperature heating in a scanning transmission electron microscope (STEM). Atomic structures of NW terminated edges and the dynamic formation process were observed experimentally. Further analysis shows that NW terminated edge could form on both Mo-zigzag (ZZ) edge and S-ZZ edge which can exhibit even higher stability superior to the pristine zigzag (ZZ) and armchair (AC) edge. In addition, the analogous edge structures can be also formed in MoS2 nanoribbon and other TMDs material such as MoxW1-xSe2. We believe that the presence of these novel edge structures in 2D and 1D TMD materials may provide novel properties and new opportunities for their versatile applications including catalytic, spintronic and electronic devices.
Monolayer transition metal dichalcogenides (TMDCs) are two-dimensional (2D) materials with many potential applications. Chemical vapour deposition (CVD) is a promising method to synthesize these materials. However, CVD-grown materials generally have
The microscopic process of oxidative etching of two-dimensional molybdenum disulfide (2D MoS2) at an atomic scale is investigated using a correlative TEM-etching study. MoS2 flakes on graphene TEM grids are precisely tracked and characterized by TEM
Doping is an effective way to modify the electronic property of two-dimensional (2D) materials and endow them with new functionalities. However, wide-range control of the substitutional doping concentration with large scale uniformity remains challen
Molybdenum disulfide has recently emerged as a promising two-dimensional semiconducting material for nano-electronic, opto-electronic and spintronic applications. However, demonstrating spin-transport through a semiconducting MoS2 channel is challeng
We study charge transport in a monolayer molybdenum disulfide nanoflake over a wide range of carrier density, temperature, and electric bias. We find that the transport is best described by a percolating picture in which the disorder breaks translati