ﻻ يوجد ملخص باللغة العربية
The scaled Renyi information plays a significant role in evaluating the performance of information processing tasks by virtue of its connection to the error exponent analysis. In quantum information theory, there are three generalizations of the classical Renyi divergence---the Petzs, sandwiched, and log-Euclide
Recently a new quantum generalization of the Renyi divergence and the corresponding conditional Renyi entropies was proposed. Here we report on a surprising relation between conditional Renyi entropies based on this new generalization and conditional
Despite the success of large-scale empirical risk minimization (ERM) at achieving high accuracy across a variety of machine learning tasks, fair ERM is hindered by the incompatibility of fairness constraints with stochastic optimization. In this pape
We consider the problem of transmitting classical and quantum information reliably over an entanglement-assisted quantum channel. Our main result is a capacity theorem that gives a three-dimensional achievable rate region. Points in the region are ra
We introduce a new information theoretic measure of quantum correlations for multiparticle systems. We use a form of multivariate mutual information -- the interaction information and generalize it to multiparticle quantum systems. There are a number
We formulate entropic measurements uncertainty relations (MURs) for a spin-1/2 system. When incompatible observables are approximatively jointly measured, we use relative entropy to quantify the information lost in approximation and we prove positive