ﻻ يوجد ملخص باللغة العربية
We construct evolutionary models of Trappist-1 in which magnetic fields impede the onset of convection according to a physics-based criterion. In the models that best fit all observational constraints, the photospheric fields in Tr-1 are found to be in the range 1450-1700 G. These are weaker by a factor of about 2 than the fields we obtained in previous magnetic models of two other cool dwarfs (GJ65A/B). Our results suggest that Tr-1 possesses a global poloidal field which is some one hundred times stronger than in the Sun. In the context of exoplanets in orbit around Tr-1, the strong poloidal fields on the star may help to protect the planets from the potentially destructive effects of coronal mass ejections. This, in combination with previous arguments about beneficial effects of flare photons in ultraviolet and visible portions of the spectrum, suggests that conditions on Tr-1 are not necessarily harmful to life on a planet in the habitable zone of Tr-1.
The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M
The nearby ultracool dwarf TRAPPIST-1 possesses several Earth-sized terrestrial planets, three of which have equilibrium temperatures that may support liquid surface water, making it a compelling target for exoplanet characterization. TRAPPIST-1 is a
The planetary system of TRAPPIST-1, discovered in 2016-2017, is a treasure-trove of information. Thanks to a combination of observational techniques, we have estimates of the radii and masses of the seven planets of this very exotic system. With thre
We study the dynamical evolution of the TRAPPIST-1 system under the influence of orbital circularization through tidal interaction with the central star. We find that systems with parameters close to the observed one evolve into a state where consecu
The TRAPPIST-1 planetary system provides an unprecedented opportunity to study terrestrial exoplanet evolution with the James Webb Space Telescope (JWST) and ground-based observatories. Since M dwarf planets likely experience extreme volatile loss, t