ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Fields on the Flare Star Trappist-1: Consequences for Radius Inflation and Planetary Habitability

113   0   0.0 ( 0 )
 نشر من قبل Dermott Mullan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct evolutionary models of Trappist-1 in which magnetic fields impede the onset of convection according to a physics-based criterion. In the models that best fit all observational constraints, the photospheric fields in Tr-1 are found to be in the range 1450-1700 G. These are weaker by a factor of about 2 than the fields we obtained in previous magnetic models of two other cool dwarfs (GJ65A/B). Our results suggest that Tr-1 possesses a global poloidal field which is some one hundred times stronger than in the Sun. In the context of exoplanets in orbit around Tr-1, the strong poloidal fields on the star may help to protect the planets from the potentially destructive effects of coronal mass ejections. This, in combination with previous arguments about beneficial effects of flare photons in ultraviolet and visible portions of the spectrum, suggests that conditions on Tr-1 are not necessarily harmful to life on a planet in the habitable zone of Tr-1.



قيم البحث

اقرأ أيضاً

The signatures of planets hosted by M dwarfs are more readily detected with transit photometry and radial velocity methods than those of planets around larger stars. Recently, transit photometry was used to discover seven planets orbiting the late-M dwarf TRAPPIST-1. Three of TRAPPIST-1s planets fall in the Habitable Zone, a region where liquid water could exist on the planetary surface given appropriate planetary conditions. We aim to investigate the habitability of the TRAPPIST-1 planets by studying the stars activity and its effect on the planets. We analyze previously-published space- and ground-based light curves and show the photometrically-determined rotation period of TRAPPIST-1 appears to vary over time due to complicated, evolving surface activity. The dramatic changes of the surface of TRAPPIST-1 suggest that rotation periods determined photometrically may not be reliable for this and similarly active stars. While the activity of the star is low, we use the premise of the cosmic shoreline to provide evidence that the TRAPPIST-1 environment has potentially led to the erosion of possible planetary atmospheres by extreme ultraviolet stellar emission.
The nearby ultracool dwarf TRAPPIST-1 possesses several Earth-sized terrestrial planets, three of which have equilibrium temperatures that may support liquid surface water, making it a compelling target for exoplanet characterization. TRAPPIST-1 is a n active star with frequent flaring, with implications for the habitability of its planets. Superflares (stellar flares whose energy exceeds 10^33 erg) can completely destroy the atmospheres of a cool stars planets, allowing ultraviolet radiation and high-energy particles to bombard their surfaces. However, ultracool dwarfs emit little ultraviolet flux when quiescent, raising the possibility of frequent flares being necessary for prebiotic chemistry that requires ultraviolet light. We combine Evryscope and Kepler observations to characterize the high-energy flare rate of TRAPPIST-1. The Evryscope is an array of 22 small telescopes imaging the entire Southern sky in g every two minutes. Evryscope observations, spanning 170 nights over 2 years, complement the 80-day continuous short-cadence K2 observations by sampling TRAPPIST-1s long-term flare activity. We update TRAPPIST-1s superflare rate, finding a cumulative rate of 4.2 (+1.9 -0.2) superflares per year. We calculate the flare rate necessary to deplete ozone in the habitable-zone planets atmospheres, and find that TRAPPIST-1s flare rate is insufficient to deplete ozone if present on its planets. In addition, we calculate the flare rate needed to provide enough ultraviolet flux to power prebiotic chemistry. We find TRAPPIST-1s flare rate is likely insufficient to catalyze some of the Earthlike chemical pathways thought to lead to RNA synthesis, and flux due to flares in the biologically relevant UV-B band is orders of magnitude less for any TRAPPIST-1 planet than has been experienced by Earth at any time in its history.
87 - Emeline Bolmont 2018
The planetary system of TRAPPIST-1, discovered in 2016-2017, is a treasure-trove of information. Thanks to a combination of observational techniques, we have estimates of the radii and masses of the seven planets of this very exotic system. With thre e planets within the traditional Habitable Zone limits, it is one of the best constrained system of astrobiological interest. I will review here the theoretical constraints we can put on this system by trying to reconstruct its history: its atmospheric evolution which depends on the luminosity evolution of the dwarf star, and its tidal dynamical evolution. These constraints can then be used as hypotheses to assess the habitability of the outer planets of the system with a Global Climate Model.
We study the dynamical evolution of the TRAPPIST-1 system under the influence of orbital circularization through tidal interaction with the central star. We find that systems with parameters close to the observed one evolve into a state where consecu tive planets are linked by first order resonances and consecutive triples, apart from planets c, d and e, by connected three body Laplace resonances. The system expands with period ratios increasing and mean eccentricities decreasing with time. This evolution is largely driven by tides acting on the innermost planets which then influence the outer ones. In order that deviations from commensurability become significant only on $Gy$ time scales or longer, we require that the tidal parameter associated with the planets has to be such that $Q > sim 10^{2-3}.$ At the same time, if we start with two subsystems, with the inner three planets comprising the inner one, $Q$ associated with the planets has to be on the order (and not significantly exceeding) $10^{2-3}$ for the two subsystems to interact and end up in the observed configuration. This scenario is also supported by modelling of the evolution through disk migration which indicates that the whole system cannot have migrated inwards together. Also in order to avoid large departures from commensurabilities, the system cannot have stalled at a disk inner edge for significant time periods. We discuss the habitability consequences of the tidal dissipation implied by our modelling, concluding that planets d, e and f are potentially in habitable zones.
The TRAPPIST-1 planetary system provides an unprecedented opportunity to study terrestrial exoplanet evolution with the James Webb Space Telescope (JWST) and ground-based observatories. Since M dwarf planets likely experience extreme volatile loss, t he TRAPPIST-1 planets may have highly-evolved, possibly uninhabitable atmospheres. We used a versatile, 1D terrestrial-planet climate model with line-by-line radiative transfer and mixing length convection (VPL Climate) coupled to a terrestrial photochemistry model to simulate environmental states for the TRAPPIST-1 planets. We present equilibrium climates with self-consistent atmospheric compositions, and observational discriminants of post-runaway, desiccated, 10-100 bar O2- and CO2-dominated atmospheres, including interior outgassing, as well as for water-rich compositions. Our simulations show a range of surface temperatures, most of which are not habitable, although an aqua-planet TRAPPIST-1 e could maintain a temperate surface given Earth-like geological outgassing and CO2. We find that a desiccated TRAPPIST-1 h may produce habitable surface temperatures beyond the maximum greenhouse distance. Potential observational discriminants for these atmospheres in transmission and emission spectra are influenced by photochemical processes and aerosol formation, and include collision-induced oxygen absorption (O2-O2), and O3, CO, SO2, H2O, and CH4 absorption features, with transit signals of up to 200 ppm. Our simulated transmission spectra are consistent with K2, HST, and Spitzer observations of the TRAPPIST-1 planets. For several terrestrial atmospheric compositions, we find that TRAPPIST-1 b is unlikely to produce aerosols. These results can inform JWST observation planning and data interpretation for the TRAPPIST-1 system and other M dwarf terrestrial planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا