ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the environment and habitability of TRAPPIST-1

88   0   0.0 ( 0 )
 نشر من قبل Emeline Bolmont
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Emeline Bolmont




اسأل ChatGPT حول البحث

The planetary system of TRAPPIST-1, discovered in 2016-2017, is a treasure-trove of information. Thanks to a combination of observational techniques, we have estimates of the radii and masses of the seven planets of this very exotic system. With three planets within the traditional Habitable Zone limits, it is one of the best constrained system of astrobiological interest. I will review here the theoretical constraints we can put on this system by trying to reconstruct its history: its atmospheric evolution which depends on the luminosity evolution of the dwarf star, and its tidal dynamical evolution. These constraints can then be used as hypotheses to assess the habitability of the outer planets of the system with a Global Climate Model.



قيم البحث

اقرأ أيضاً

We study the dynamical evolution of the TRAPPIST-1 system under the influence of orbital circularization through tidal interaction with the central star. We find that systems with parameters close to the observed one evolve into a state where consecu tive planets are linked by first order resonances and consecutive triples, apart from planets c, d and e, by connected three body Laplace resonances. The system expands with period ratios increasing and mean eccentricities decreasing with time. This evolution is largely driven by tides acting on the innermost planets which then influence the outer ones. In order that deviations from commensurability become significant only on $Gy$ time scales or longer, we require that the tidal parameter associated with the planets has to be such that $Q > sim 10^{2-3}.$ At the same time, if we start with two subsystems, with the inner three planets comprising the inner one, $Q$ associated with the planets has to be on the order (and not significantly exceeding) $10^{2-3}$ for the two subsystems to interact and end up in the observed configuration. This scenario is also supported by modelling of the evolution through disk migration which indicates that the whole system cannot have migrated inwards together. Also in order to avoid large departures from commensurabilities, the system cannot have stalled at a disk inner edge for significant time periods. We discuss the habitability consequences of the tidal dissipation implied by our modelling, concluding that planets d, e and f are potentially in habitable zones.
The discovery of potentially habitable planets around the ultracool dwarf star Trappist-1 naturally poses the question: could Trappist-1 planets be home to life? These planets orbit very close to the host star and are most susceptible to the UV radia tion emitted by the intense and frequent flares of Trappist-1. Here we calculate the UV spectra (100 - 450 nm) of a superflare observed on Trappist-1 with the K2 mission. We couple radiative transfer models to this spectra to estimate the UV surface flux on planets in the habitable zone of Trappist-1 (planets $e$, $f$, and $g$), assuming atmospheric scenarios based on a pre-biotic and an oxygenic atmosphere. We quantify the impact of the UV radiation on living organisms on the surface and on a hypothetical planet ocean. Finally, we find that for non-oxygenic planets, UV resistant lifeforms would survive on the surface of planets f and g. Nevertheless, more fragile organisms (i.e. textit{E. coli}) could be protected from the hazardous UV effects at ocean depths greater than 8m. If the planets have an ozone layer, any lifeforms studied here would survive in the HZ planets.
The nearby ultracool dwarf TRAPPIST-1 possesses several Earth-sized terrestrial planets, three of which have equilibrium temperatures that may support liquid surface water, making it a compelling target for exoplanet characterization. TRAPPIST-1 is a n active star with frequent flaring, with implications for the habitability of its planets. Superflares (stellar flares whose energy exceeds 10^33 erg) can completely destroy the atmospheres of a cool stars planets, allowing ultraviolet radiation and high-energy particles to bombard their surfaces. However, ultracool dwarfs emit little ultraviolet flux when quiescent, raising the possibility of frequent flares being necessary for prebiotic chemistry that requires ultraviolet light. We combine Evryscope and Kepler observations to characterize the high-energy flare rate of TRAPPIST-1. The Evryscope is an array of 22 small telescopes imaging the entire Southern sky in g every two minutes. Evryscope observations, spanning 170 nights over 2 years, complement the 80-day continuous short-cadence K2 observations by sampling TRAPPIST-1s long-term flare activity. We update TRAPPIST-1s superflare rate, finding a cumulative rate of 4.2 (+1.9 -0.2) superflares per year. We calculate the flare rate necessary to deplete ozone in the habitable-zone planets atmospheres, and find that TRAPPIST-1s flare rate is insufficient to deplete ozone if present on its planets. In addition, we calculate the flare rate needed to provide enough ultraviolet flux to power prebiotic chemistry. We find TRAPPIST-1s flare rate is likely insufficient to catalyze some of the Earthlike chemical pathways thought to lead to RNA synthesis, and flux due to flares in the biologically relevant UV-B band is orders of magnitude less for any TRAPPIST-1 planet than has been experienced by Earth at any time in its history.
Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of terrestrial planets that formed in the same protoplane tary disk. While the sizes of the TRAPPIST-1 planets are all known to better than 5% precision, their densities have significant uncertainties (between 28% and 95%) because of poor constraints on the planets masses. Aims.The goal of this paper is to improve our knowledge of the TRAPPIST-1 planetary masses and densities using transit-timing variations (TTV). The complexity of the TTV inversion problem is known to be particularly acute in multi-planetary systems (convergence issues, degeneracies and size of the parameter space), especially for resonant chain systems such as TRAPPIST-1. Methods. To overcome these challenges, we have used a novel method that employs a genetic algorithm coupled to a full N-body integrator that we applied to a set of 284 individual transit timings. This approach enables us to efficiently explore the parameter space and to derive reliable masses and densities from TTVs for all seven planets. Results. Our new masses result in a five- to eight-fold improvement on the planetary density uncertainties, with precisions ranging from 5% to 12%. These updated values provide new insights into the bulk structure of the TRAPPIST-1 planets. We find that TRAPPIST-1,c and e likely have largely rocky interiors, while planets b, d, f, g, and h require envelopes of volatiles in the form of thick atmospheres, oceans, or ice, in most cases with water mass fractions less than 5%.
We construct evolutionary models of Trappist-1 in which magnetic fields impede the onset of convection according to a physics-based criterion. In the models that best fit all observational constraints, the photospheric fields in Tr-1 are found to be in the range 1450-1700 G. These are weaker by a factor of about 2 than the fields we obtained in previous magnetic models of two other cool dwarfs (GJ65A/B). Our results suggest that Tr-1 possesses a global poloidal field which is some one hundred times stronger than in the Sun. In the context of exoplanets in orbit around Tr-1, the strong poloidal fields on the star may help to protect the planets from the potentially destructive effects of coronal mass ejections. This, in combination with previous arguments about beneficial effects of flare photons in ultraviolet and visible portions of the spectrum, suggests that conditions on Tr-1 are not necessarily harmful to life on a planet in the habitable zone of Tr-1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا