ﻻ يوجد ملخص باللغة العربية
We report the discovery of a Milky Way satellite in the constellation of Antlia. The Antlia 2 dwarf galaxy is located behind the Galactic disc at a latitude of $bsim 11^{circ}$ and spans $1.26$ degrees, which corresponds to $sim2.9$ kpc at its distance of 130 kpc. While similar in spatial extent to the Large Magellanic Cloud, Antlia 2 is orders of magnitude fainter at $M_V=-9$ mag, making it by far the lowest surface brightness system known (at $sim31.9$ mag/arcsec$^2$), $sim100$ times more diffuse than the so-called ultra diffuse galaxies. The satellite was identified using a combination of astrometry, photometry and variability data from textit{Gaia} Data Release 2, and its nature confirmed with deep archival DECam imaging, which revealed a conspicuous BHB signal. We have also obtained follow-up spectroscopy using AAOmega on the AAT, identifying 159 member stars, and we used them to measure the dwarfs systemic velocity, $290.9pm0.5$km/s, its velocity dispersion, $5.7pm1.1$ km/s, and mean metallicity, [Fe/H]$=-1.4$. From these properties we conclude that Antlia 2 inhabits one of the least dense Dark Matter (DM) halos probed to date. Dynamical modelling and tidal-disruption simulations suggest that a combination of a cored DM profile and strong tidal stripping may explain the observed properties of this satellite. The origin of this core may be consistent with aggressive feedback, or may even require alternatives to cold dark matter (such as ultra-light bosons).
We use Gaia DR2 astrometric and line-of-sight velocity information combined with two sets of distances obtained with a Bayesian inference method to study the 3D velocity distribution in the Milky Way disc. We search for variations in all Galactocentr
The second data release of the Gaia mission has revealed, in stellar velocity and action space, multiple ridges, the exact origin of which is still debated. Recently, we demonstrated that a large Galactic bar with pattern speed 39 km/s/kpc does creat
Using Gaia DR2 astrometry, we map the kinematic signature of the Galactic stellar warp out to a distance of 7 kpc from the Sun. Combining Gaia DR2 and 2MASS photometry, we identify, via a probabilistic approach, 599 494 upper main sequence stars and
We characterize the kinematic and chemical properties of 589 Galactic Anticenter Substructure Stars (GASS) with K-/M- giants in Integrals-of-Motion space. These stars likely include members of previously identified substructures such as Monoceros, A1
We infer the gravitational potential of the Galactic disk by analysing the phase-space densities of 120 stellar samples in 40 spatially separate sub-regions of the solar neighbourhood, using Gaias second data release (DR2), in order to quantify spati