ﻻ يوجد ملخص باللغة العربية
We use the Pearson cross-correlation statistic proposed by Liu and Jackson, and employed by Creswell et al., to look for statistically significant correlations between the LIGO Hanford and Livingston detectors at the time of the binary black hole merger GW150914. We compute this statistic for the calibrated strain data released by LIGO, using both the residuals provided by LIGO and using our own subtraction of a maximum-likelihood waveform that is constructed to model binary black hole mergers in general relativity. To assign a significance to the values obtained, we calculate the cross-correlation of both simulated Gaussian noise and data from the LIGO detectors at times during which no detection of gravitational waves has been claimed. We find that after subtracting the maximum likelihood waveform there are no statistically significant correlations between the residuals of the two detectors at the time of GW150914.
The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two $sim 30 M_odot$ black holes at a distance of $sim 400$ Mpc. This event has facilitated qualitatively new tests of gr
We report the results of an extensive search in the AGILE data for a gamma-ray counterpart of the LIGO gravitational wave event GW150914. Currently in spinning mode, AGILE has the potential of covering with its gamma-ray instrument 80 % of the sky mo
The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW1
With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer G
Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we put upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo collaboratio