ﻻ يوجد ملخص باللغة العربية
The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW150914 error box during normal operations. Here we report the analysis of the data taken during these satellite slews performed two hours and two weeks after the GW event. Our data cover 1.1 square degrees and 4.8 square degrees of the final GW localization region. No credible X-ray counterpart to GW150914 is found down to a sensitivity of 6E-13 erg/cm2/s in the 0.2-2 keV band. Nevertheless, these observations show the great potential of XMM-Newton slew observations for the search of the electromagnetic counterparts of GW events. A series of adjacent slews performed in response to a GW trigger would take <1.5 days to cover most of the typical GW credible region. We discuss this scenario and its prospects for detecting the X-ray counterpart of future GW detections.
We report the results of an extensive search in the AGILE data for a gamma-ray counterpart of the LIGO gravitational wave event GW150914. Currently in spinning mode, AGILE has the potential of covering with its gamma-ray instrument 80 % of the sky mo
With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer G
We present optical spectroscopy of candidate AGN pinpointed by a Swift follow-up campaign on unidentified transients in the XMM-Newton Slew Survey, increasing the completeness of the identifications of AGN in the Survey. Our Swift follow-up campaign
XMM-Newton, with the huge collecting area of its mirrors and the high quantum efficiency of its EPIC detectors, is the most sensitive X-ray observatory ever flown. This is strikingly evident during slew exposures, which, while yielding only at most 1
The era of gravitational-wave astronomy began on 14 September 2015, when the LIGO Scientific Collaboration detected the merger of two $sim 30 M_odot$ black holes at a distance of $sim 400$ Mpc. This event has facilitated qualitatively new tests of gr