ﻻ يوجد ملخص باللغة العربية
The interference of charge-changing interactions, weaker than the V-A Standard Model (SM) interaction and having a different Lorentz structure, with that SM interaction, can, in principle, produce effects near the end point of the Tritium beta decay spectrum which are of a different character from those produced by the purely kinematic effect of neutrino mass expected in the simplest extension of the SM. We show that the existence of more than one mass eigenstate can lead to interference effects at the end point that are stronger than those occurring over the entire spectrum. We discuss these effects both for the special case of Dirac neutrinos and the more general case of Majorana neutrinos and show that, for the present precision of the experiments, one formula should suffice to express the interference effects in all cases. Implications for sterile neutrinos are noted.
The paper reviews recent experiments on tritium beta spectroscopy searching for the absolute value of the electron neutrino mass $m( u_e)$. By use of dedicated electrostatic filters with high acceptance and resolution, the uncertainty on the observab
Study of the neutrinoless double beta decay and searches for the manifestation of the neutrino mass in ordinary beta decay are the main sources of information about the absolute neutrino mass scale, and the only practical source of information about
In the framework of the Standard Model (SM) a theoretical description of the neutron beta decay is given at the level of 10^{-5}. The neutron lifetime and correlation coefficients of the neutron beta decay for a polarized neutron, a polarized electro
Past and current direct neutrino mass experiments set limits on the so-called effective neutrino mass, which is an incoherent sum of neutrino masses and lepton mixing matrix elements. The electron energy spectrum which neglects the relativistic and n
We investigate how non-standard neutrino interactions (NSIs) with matter can be generated by new physics beyond the Standard Model (SM) and analyse the constraints on the NSIs in these SM extensions. We focus on tree-level realisations of lepton numb