ﻻ يوجد ملخص باللغة العربية
Logs are imperative in the development and maintenance process of many software systems. They record detailed runtime information that allows developers and support engineers to monitor their systems and dissect anomalous behaviors and errors. The increasing scale and complexity of modern software systems, however, make the volume of logs explodes. In many cases, the traditional way of manual log inspection becomes impractical. Many recent studies, as well as industrial tools, resort to powerful text search and machine learning-based analytics solutions. Due to the unstructured nature of logs, a first crucial step is to parse log messages into structured data for subsequent analysis. In recent years, automated log parsing has been widely studied in both academia and industry, producing a series of log parsers by different techniques. To better understand the characteristics of these log parsers, in this paper, we present a comprehensive evaluation study on automated log parsing and further release the tools and benchmarks for easy reuse. More specifically, we evaluate 13 log parsers on a total of 16 log datasets spanning distributed systems, supercomputers, operating systems, mobile systems, server applications, and standalone software. We report the benchmarking results in terms of accuracy, robustness, and efficiency, which are of practical importance when deploying automated log parsing in production. We also share the success stories and lessons learned in an industrial application at Huawei. We believe that our work could serve as the basis and provide valuable guidance to future research and deployment of automated log parsing.
Logs are semi-structured text generated by logging statements in software source code. In recent decades, software logs have become imperative in the reliability assurance mechanism of many software systems because they are often the only data availa
Logs have been widely adopted in software system development and maintenance because of the rich system runtime information they contain. In recent years, the increase of software size and complexity leads to the rapid growth of the volume of logs. T
Theoretical predictions for scattering processes with multi-particle final states at next-to-leading order (NLO) in perturbative QCD are essential to fully exploit the physics potential of present and future high-energy colliders. The status of NLO QCD calculations and tools is reviewed.
The development of a package for the management of physics data is described: its design, implementation and computational benchmarks. This package improves the data management tools originally developed for Geant4 physics models based on the EADL, E
The development of a package for the management of physics data is described: its design, implementation and computational benchmarks. This package improves the data management tools originally developed for Geant4 physics models based on the EADL, E