ﻻ يوجد ملخص باللغة العربية
We describe the SDSS-IV MaNGA PyMorph Photometric (MPP-VAC) and MaNGA Deep Learning Morphology (MDLM-VAC) Value Added Catalogs. The MPP-VAC provides photometric parameters from Sersic and Sersic+Exponential fits to the 2D surface brightness profiles of the MaNGA DR15 galaxy sample. Compared to previous PyMorph analyses of SDSS imaging, our analysis of the MaNGA DR15 incorporates three improvements: the most recent SDSS images; modified criteria for determining bulge-to-disk decompositions; and the fits in MPP-VAC have been eye-balled, and re-fit if necessary, for additional reliability. A companion catalog, the MDLM-VAC, provides Deep Learning-based morphological classifications for the same galaxies. The MDLM-VAC includes a number of morphological properties (e.g., a TType, and a finer separation between elliptical and S0 galaxies). Combining the MPP- and MDLM-VACs allows to show that the MDLM morphological classifications are more reliable than previous work. It also shows that single-Sersic fits to late- and early-type galaxies are likely to return Sersic indices of $n le 2$ and $ge 4$, respectively, and this correlation between $n$ and morphology extends to the bulge component as well. While the former is well-known, the latter contradicts some recent work suggesting little correlation between $n$-bulge and morphology. Combining both VACs with MaNGAs spatially resolved spectroscopy allows us to study how the stellar angular momentum depends on morphological type. We find correlations between stellar kinematics, photometric properties, and morphological type even though the spectroscopic data played no role in the construction of the MPP- and MDLM-VACs.
We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using t
We study the properties of 66 galaxies with kinematically misaligned gas and stars from MaNGA survey. The fraction of kinematically misaligned galaxies varies with galaxy physical parameters, i.e. M*, SFR and sSFR. According to their sSFR, we further
We investigate the 3D spin alignment of galaxies with respect to the large-scale filaments using the MaNGA survey. The cosmic web is reconstructed from the Sloan Digital Sky Survey using Disperse and the 3D spins of MaNGA galaxies are estimated using
By applying spectroscopic decomposition methods to a sample of MaNGA early-type galaxies, we separate out spatially and kinematically distinct stellar populations, allowing us to explore the similarities and differences between galaxy bulges and disc
We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption