ﻻ يوجد ملخص باللغة العربية
We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et. al. (2007) group catalog, we identify central and satellite galaxies in groups with halo masses in the range 10^12.5 h^-1 M_sun < M_200b < 10^15 h^-1 M_sun. As in previous work, we see a sharp dependence on stellar mass, in the sense that ~ 70% of galaxies with stellar mass M_* > 10^11 h^-2 M_sun tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ~ 30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of centrals and satellites with group finders systematically lowers differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group finding methods will have to be forward modeled via mock catalogs.
The mean stellar alpha-to-iron abundance ratio ([$alpha$/Fe]) of a galaxy is an indicator of galactic star formation timescale. It is important for understanding the star formation history of early-type galaxies (ETGs) as their star formation process
By applying spectroscopic decomposition methods to a sample of MaNGA early-type galaxies, we separate out spatially and kinematically distinct stellar populations, allowing us to explore the similarities and differences between galaxy bulges and disc
We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption
We study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 dataset. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find
MaNGA provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage and sample size. We derive radial gradients in age, element abundan