ﻻ يوجد ملخص باللغة العربية
We present a unified theoretical study of the bright solitons governed by self-focusing and defocusing nonlinear Schrodinger (NLS) equations with generalized parity-time (PT)-symmetric Scarff II potentials. Particularly, a PT-symmetric k-wavenumber Scarff II potential and a multi-well Scarff II potential are considered, respectively. For the k-wavenumber Scarff II potential, the parameter space can be divided into different regions, corresponding to unbroken and broken PT-symmetry and the bright solitons for self-focusing and defocusing Kerr nonlinearities. For the multi-well Scarff II potential the bright solitons can be obtained by using a periodically space-modulated Kerr nonlinearity. The linear stability of bright solitons with PT-symmetric k-wavenumber and multi-well Scarff II potentials is analyzed in details using numerical simulations. Stable and unstable bright solitons are found in both regions of unbroken and broken PT-symmetry due to the existence of the nonlinearity. Furthermore, the bright solitons in three-dimensional self-focusing and defocusing NLS equations with a generalized PT-symmetric Scarff II potential are explored. This may have potential applications in the field of optical information transmission and processing based on optical solitons in nonlinear dissipative but PT-symmetric systems.
Existence and stability of PT-symmetric gap solitons in a periodic structure with defocusing nonlocal nonlinearity are studied both theoretically and numerically. We find that, for any degree of nonlocality, gap solitons are always unstable in the pr
This note examines Gross-Pitaevskii equations with PT-symmetric potentials of the Wadati type: $V=-W^2+iW_x$. We formulate a recipe for the construction of Wadati potentials supporting exact localised solutions. The general procedure is exemplified b
In this work we analyze PT-symmetric double-well potentials based on a two-mode picture. We reduce the problem into a PT-symmetric dimer and illustrate that the latter has effectively two fundamental bifurcations, a pitchfork (symmetry-breaking bifur
We consider the Cauchy problem for the Gross-Pitaevskii (GP) equation. Using the DBAR generalization of the nonlinear steepest descent method of Deift and Zhou we derive the leading order approximation to the solution of the GP in the solitonic regio
We construct exact localised solutions of the PT-symmetric Gross-Pitaevskii equation with an attractive cubic nonlinearity. The trapping potential has the form of two $delta$-function wells, where one well loses particles while the other one is fed w