ﻻ يوجد ملخص باللغة العربية
We present a general theory of Group equivariant Convolutional Neural Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature maps in these networks represent fields on a homogeneous base space, and layers are equivariant maps between spaces of fields. The theory enables a systematic classification of all existing G-CNNs in terms of their symmetry group, base space, and field type. We also consider a fundamental question: what is the most general kind of equivariant linear map between feature spaces (fields) of given types? Following Mackey, we show that such maps correspond one-to-one with convolutions using equivariant kernels, and characterize the space of such kernels.
We prove the conjectures of Graham-Kumar and Griffeth-Ram concerning the alternation of signs in the structure constants for torus-equivariant K-theory of generalized flag varieties G/P. These results are immediate consequences of an equivariant homo
A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs). Such GCNs utilize isotropic kernels and are therefore insensitive to the relative orientation of vertices and thus to th
In many machine learning tasks it is desirable that a models prediction transforms in an equivariant way under transformations of its input. Convolutional neural networks (CNNs) implement translational equivariance by construction; for other transfor
Deep learnings success has been widely recognized in a variety of machine learning tasks, including image classification, audio recognition, and natural language processing. As an extension of deep learning beyond these domains, graph neural networks
We present a convolutional network that is equivariant to rigid body motions. The model uses scalar-, vector-, and tensor fields over 3D Euclidean space to represent data, and equivariant convolutions to map between such representations. These SE(3)-