ترغب بنشر مسار تعليمي؟ اضغط هنا

Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces

531   0   0.0 ( 0 )
 نشر من قبل Dave Anderson
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the conjectures of Graham-Kumar and Griffeth-Ram concerning the alternation of signs in the structure constants for torus-equivariant K-theory of generalized flag varieties G/P. These results are immediate consequences of an equivariant homological Kleiman transversality principle for the Borel mixing spaces of homogeneous spaces, and their subvarieties, under a natural group action with finitely many orbits. The computation of the coefficients in the expansion of the equivariant K-class of a subvariety in terms of Schubert classes is reduced to an Euler characteristic using the homological transversality theorem for non-transitive group actions due to S. Sierra. A vanishing theorem, when the subvariety has rational singularities, shows that the Euler characteristic is a sum of at most one term--the top one--with a well-defined sign. The vanishing is proved by suitably modifying a geometric argument due to M. Brion in ordinary K-theory that brings Kawamata-Viehweg vanishing to bear.



قيم البحث

اقرأ أيضاً

We present a general theory of Group equivariant Convolutional Neural Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature maps in these networks represent fields on a homogeneous base space, and layers are equivari ant maps between spaces of fields. The theory enables a systematic classification of all existing G-CNNs in terms of their symmetry group, base space, and field type. We also consider a fundamental question: what is the most general kind of equivariant linear map between feature spaces (fields) of given types? Following Mackey, we show that such maps correspond one-to-one with convolutions using equivariant kernels, and characterize the space of such kernels.
76 - Richard P. Thomas 2018
In [MT2] the Vafa-Witten theory of complex projective surfaces is lifted to oriented $mathbb C^*$-equivariant cohomology theories. Here we study the K-theoretic refinement. It gives rational functions in $t^{1/2}$ invariant under $t^{1/2}leftrightarr ow t^{-1/2}$ which specialise to numerical Vafa-Witten invariants at $t=1$. On the instanton branch the invariants give the virtual $chi_{-t}^{}$-genus refinement of Gottsche-Kool. Applying modularity to their calculations gives predictions for the contribution of the monopole branch. We calculate some cases and find perfect agreement. We also do calculations on K3 surfaces, finding Jacobi forms refining the usual modular forms, proving a conjecture of Gottsche-Kool. We determine the K-theoretic virtual classes of degeneracy loci using Eagon-Northcott complexes, and show they calculate refined Vafa-Witten invariants. Using this Laarakker [Laa] proves universality results for the invariants.
We produce a Grothendieck transformation from bivariant operational $K$-theory to Chow, with a Riemann-Roch formula that generalizes classical Grothendieck-Verdier-Riemann-Roch. We also produce Grothendieck transformations and Riemann-Roch formulas t hat generalize the classical Adams-Riemann-Roch and equivariant localization theorems. As applications, we exhibit a projective toric variety $X$ whose equivariant $K$-theory of vector bundles does not surject onto its ordinary $K$-theory, and describe the operational $K$-theory of spherical varieties in terms of fixed-point data. In an appendix, Vezzosi studies operational $K$-theory of derived schemes and constructs a Grothendieck transformation from bivariant algebraic $K$-theory of relatively perfect complexes to bivariant operational $K$-theory.
In this paper, we consider the CM line bundle on the K-moduli space, i.e., the moduli space parametrizing K-polystable Fano varieties. We prove it is ample on any proper subspace parametrizing reduced uniformly K-stable Fano varieties which conjectur ally should be the entire moduli space. As a corollary, we prove that the moduli space parametrizing smoothable K-polystable Fano varieties is projective. During the course of proof, we develop a new invariant for filtrations which can be used to test various K-stability notions of Fano varieties.
We show that the product in the quantum K-ring of a generalized flag manifold $G/P$ involves only finitely many powers of the Novikov variables. In contrast to previous approaches to this finiteness question, we exploit the finite difference module s tructure of quantum K-theory. At the core of the proof is a bound on the asymptotic growth of the $J$-function, which in turn comes from an analysis of the singularities of the zastava spaces studied in geometric representation theory. An appendix by H. Iritani establishes the equivalence between finiteness and a quadratic growth condition on certain shift operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا