ﻻ يوجد ملخص باللغة العربية
We study sampling of Fourier Integral Operators $A$ at rates $sh$ with $s$ fixed and $h$ a small parameter. We show that the Nyquist sampling limit of $Af$ and $f$ are related by the canonical relation of $A$ using semiclassical analysis. We apply this analysis to the Radon transform in the parallel and the fan-beam coordinates. We explain and illustrate the optimal sampling rates for $Af$, the aliasing artifacts, and the effect of averaging (blurring) the data $Af$. We prove a Weyl type of estimate on the minimal number of sampling points to recover $f$ stably in terms of the volume of its semiclassical wave front set.
We study the effect of additive noise to the inversion of FIOs associated to a diffeomorphic canonical relation. We use the microlocal defect measures to measure the power spectrum of the noise and analyze how that power spectrum is transformed under
This survey addresses sampling discretization and its connections with other areas of mathematics. We present here known results on sampling discretization of both integral norms and the uniform norm beginning with classical results and ending with v
Inverse scattering problems have many important applications. In this paper, given limited aperture data, we propose a Bayesian method for the inverse acoustic scattering to reconstruct the shape of an obstacle. The inverse problem is formulated as a
The paper studies inverse problems of determining unknown coefficients in various semi-linear and quasi-linear wave equations. We introduce a method to solve inverse problems for non-linear equations using interaction of three waves, that makes it po
We develop an existence and regularity theory for a class of degenerate one-phase free boundary problems. In this way we unify the basic theories in free boundary problems like the classical one-phase problem, the obstacle problem, or more generally for minimizers of the Alt-Phillips functional.