ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy-electron quantum criticality and single-particle spectroscopy

178   0   0.0 ( 0 )
 نشر من قبل Stefan Kirchner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM) have become indispensable tools in the study of correlated quantum materials. Both probe complementary aspects of the single-particle excitation spectrum. Taken together, ARPES and STM have the potential to explore properties of the electronic Greens function, a central object of many-body theory. This review explicates this potential with a focus on heavy-electron quantum criticality, especially the role of Kondo destruction. A discussion on how to probe the Kondo destruction effect across the quantum-critical point using ARPES and STM measurements is presented. Particular emphasis is placed on the question of how to distinguish between the signatures of the initial onset of hybridization-gap formation, which is the high-energy physics to be expected in all heavy-electron systems, and those of Kondo destruction, which characterizes the low-energy physics and, hence, the nature of quantum criticality. Recent progress and possible challenges in the experimental investigations are surveyed, the STM and ARPES spectra for several quantum-critical heavy-electron compounds are compared, and the prospects for further advances are outlined.



قيم البحث

اقرأ أيضاً

During the last few years, investigations of Rare-Earth materials have made clear that not only the heavy fermion phase in these systems provides interesting physics, but the quantum criticality where such a phase dies exhibits novel phase transition physics not fully understood. Moreover, attempts to study the critical point numerically face the infamous fermion sign problem, which limits their accuracy. Effective action techniques and Callan-Symanzik equations have been very popular in high energy physics, where they enjoy a good record of success. Yet, they have been little exploited for fermionic systems in condensed matter physics. In this work, we apply the RG effective action and Callan-Symanzik techiques to the heavy fermion problem. We write for the first time the effective action describing the low energy physics of the system. The f-fermions are replaced by a dynamical scalar field whose nonzero expected value corresponds to the heavy fermion phase. This removes the fermion sign problem, making the effective action amenable to numerical studies as the effective theory is bosonic. Renormalization group studies of the effective action can be performed to extract approximations to nonperturbative effects at the transition. By performing one-loop renormalizations, resummed via Callan-Symanzik methods, we describe the heavy fermion criticality and predict the heavy fermion critical dynamical susceptibility and critical specific heat. The specific heat coefficient exponent we obtain (0.39) is in excellent agreement with the experimental result at low temperatures (0.4).
Iridates provide a fertile ground to investigate correlated electrons in the presence of strong spin-orbit coupling. Bringing these systems to the proximity of a metal-insulator quantum phase transition is a challenge that must be met to access quant um critical fluctuations with charge and spin-orbital degrees of freedom. Here, electrical transport and Raman scattering measurements provide evidence that a metal-insulator quantum critical point is effectively reached in 5 % Co-doped Sr$_2$IrO$_4$ with high structural quality. The dc-electrical conductivity shows a linear temperature dependence that is successfully captured by a model involving a Co acceptor level at the Fermi energy that becomes gradually populated at finite temperatures, creating thermally-activated holes in the $J_{text {eff}}=1/2$ lower Hubbard band. The so-formed quantum critical fluctuations are exceptionally heavy and the resulting electronic continuum couples with an optical phonon at all temperatures. The magnetic order and pseudospin-phonon coupling are preserved under the Co doping. This work brings quantum phase transitions, iridates and heavy-fermion physics to the same arena.
155 - V. A. Sidorov , Xin Lu , T. Park 2013
We report the temperature-pressure (T-P) phase diagram of CePt2In7 single crystals, especially the pressure evolution of the antiferromagnetic order and the emergence of superconductivity, which have been studied by electrical resistivity and ac calo rimetry under nearly hydrostatic environments. Compared with its polycrystalline counterpart, bulk superconductivity coexists with antiferromagnetism in a much narrower pressure region. The possible existence of textured superconductivity and local quantum criticality also are observed in CePt2In7, exhibiting a remarkable similarity with CeRhIn5.
The Drude model describes the free-electron conduction in simple metals, governed by the freedom that the mobile electrons have within the material. In strongly correlated systems, however, a significant deviation of the optical conductivity from the simple metallic Drude behavior is observed. Here, we investigate the optical conductivity of the heavy-fermion system CeCu$_{mathrm{6-x}}$Au$_{mathrm{x}}$, using time-resolved, phase-sensitive terahertz spectroscopy. Terahertz electric field creates two types of excitations in heavy-fermion materials: First, the intraband excitations that leave the heavy quasiparticles intact. Second, the resonant interband transitions between the heavy and light parts of the hybridized conduction band that break the Kondo singlet. We find that the Kondo-singlet breaking interband transitions do not create a Drude peak, while the Kondo-retaining intraband excitations yield the expected Drude response; thus, making it possible to separate these two fundamentally different correlated contributions to the optical conductivity.
Quantum criticality beyond the Landau paradigm represents a fundamental problem in condensed matter and statistical physics. Heavy fermion systems with multipolar degrees of freedom can play an important role in the search for its universal descripti on. We consider a Kondo lattice model with both spin and quadrupole degrees of freedom, which we show to exhibit an antiferroquadrupolar phase. Using a field theoretical representation of the model, we find that Kondo couplings are exactly marginal in the renormalization group sense in this phase. This contrasts with the relevant nature of the Kondo couplings in the paramagnetic phase and, as such, it implies that a Kondo destruction and a concomitant small to large Fermi surface jump must occur as the system is tuned from the antiferroquadrupolar ordered to the paramagnetic phase. Implications of our results for multipolar heavy fermion physics in particular and metallic quantum criticality in general are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا