ترغب بنشر مسار تعليمي؟ اضغط هنا

Ripple morphology of graphitic surfaces: a comparison between few-layer graphene and HOPG

56   0   0.0 ( 0 )
 نشر من قبل Camilla Coletti
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surface structure of Few-Layer Graphene (FLG) epitaxially grown on the C-face of SiC has been investigated by TM-AFM in ambient air and upon interaction with diluted aqueous solutions of bio-organic molecules (dimethyl sulfoxide, DMSO, and L-Methionine). On pristine FLG we observe nicely ordered, three-fold oriented rippled domains, with a 4.7+/-0.2 nm periodicity (small periodicity, SP) and a peak-to-valley distance in the range 0.1-0.2 nm. Upon mild interaction of the FLG surface with the molecular solution, the ripple periodicity relaxes to 6.2+/-0.2 nm (large periodicity, LP), while the peak-to-valley height increases to 0.2-0.3 nm. When additional energy is transferred to the system through sonication in solution, graphene planes are peeled off from FLG, as shown by quantitative analysis of XPS and Raman spectroscopy data which indicate a neat reduction of thickness. Upon sonication rippled domains are no longer observed. Regarding HOPG, we could not observe ripples on cleaved samples in ambient air, while LP ripples develop upon interaction with the molecular solutions. Recent literature on similar systems is not univocal regarding the interpretation of rippling. The complex of our comparative observations on FLG and HOPG can be hardly rationalized solely on the base of surface assembly of molecules, either organic molecules coming from the solution or adventitious species. We propose to consider the ripples as the manifestation of the free-energy minimization of quasi-2D layers, eventually affected by factors such as the interplane stacking, the interaction with molecules and/or with the AFM tip.



قيم البحث

اقرأ أيضاً

The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and is qualitatively different from that of thin samples of bulk graphite.
Two-dimensional (2D) antimony (Sb, antimonene) recently attracted interest due to its peculiar electronic properties and its suitability as anode material in next generation batteries. Sb however exhibits a large polymorphic/allotropic structural div ersity, which is also influenced by the Sbs support. Thus understanding Sb heterostructure formation is key in 2D Sb integration. Particularly 2D Sb/graphene interfaces are of prime importance as contacts in electronics and electrodes in batteries. We thus study here few-layered 2D Sb/graphene heterostructures by atomic-resolution (scanning) transmission electron microscopy. We find the co-existence of two Sb morphologies: First is a 2D growth morphology of layered beta-Sb with beta-Sb(001)||graphene(001) texture. Second are one-dimensional (1D) Sb nanowires which can be matched to beta-Sb with beta-Sb[2-21] perpendicular to graphene(001) texture and are structurally also closely related to thermodynamically non-preferred cubic Sb(001)||graphene(001). Importantly, both Sb morphologies show rotational van-der-Waals epitaxy with the graphene support. Both Sb morphologies are well resilient against environmental bulk oxidation, although superficial Sb-oxide layer formation merits consideration, including formation of novel epitaxial Sb2O3(111)/beta-Sb(001) heterostructures. Exact Sb growth behavior is sensitive on employed processing and substrate properties including, notably, the nature of the support underneath the direct graphene support. This introduces the substrate underneath a direct 2D support as a key parameter in 2D Sb heterostructure formation. Our work provides insights into the rich phase and epitaxy landscape in 2D Sb and 2D Sb/graphene heterostructures.
It is now possible to produce graphene nanoribbons (GNRs) with atomically defined widths. GNRs offer many opportunities for electronic devices and composites, if it is possible to establish the link between edge structure and functionalisation, and r esultant GNR properties. Switching hydrogen edge termination to larger more complex functional groups such as hydroxyls or thiols induces strain at the ribbon edge. However we show that this strain is then relieved via the formation of static out-of-plane ripples. The resultant ribbons have a significantly reduced Youngs Modulus which varies as a function of ribbon width, modified band gaps, as well as heterogeneous chemical reactivity along the edge. Rather than being the exception, such static edge ripples are likely on the majority of functionalized graphene ribbon edges.
A universal set of third--nearest neighbour tight--binding (TB) parameters is presented for calculation of the quasiparticle (QP) dispersion of $N$ stacked $sp^2$ graphene layers ($N=1... infty$) with $AB$ stacking sequence. The QP bands are strongly renormalized by electron--electron interactions which results in a 20% increase of the nearest neighbour in--plane and out--of--plane TB parameters when compared to band structure from density functional theory. With the new set of TB parameters we determine the Fermi surface and evaluate exciton energies, charge carrier plasmon frequencies and the conductivities which are relevant for recent angle--resolved photoemission, optical, electron energy loss and transport measurements. A comparision of these quantitities to experiments yields an excellent agreement. Furthermore we discuss the transition from few layer graphene to graphite and a semimetal to metal transition in a TB framework.
We present the first systematic study of the stability of the structure and electrical properties of FeCl$_3$ intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical tr ansport, high resolution transmission electron microscopy and Raman spectroscopy conclusively demonstrate the unforeseen stability of this transparent conductor to a relative humidity up to $100 %$ at room temperature for 25 days, to a temperature up to $150,^circ$C in atmosphere and up to a temperature as high as $620,^circ$C in vacuum, that is more than twice higher than the temperature at which the intercalation is conducted. The stability of FeCl$_3$ intercalated few-layer graphene together with its unique values of low square resistance and high optical transparency, makes this material an attractive transparent conductor in future flexible electronic applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا