ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniform stationary measure of space-inhomogeneous quantum walks in one dimension

77   0   0.0 ( 0 )
 نشر من قبل Daichi Nakayama
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The discrete-time quantum walk (QW) is a quantum version of the random walk (RW) and has been widely investigated for the last two decades. Some remarkable properties of QW are well known. For example, QW has a ballistic spreading, i.e., QW is quadratically faster than RW. For some cases, localization occurs: a walker stays at the starting position forever. In this paper, we consider stationary measures of two-state QWs on the line. It was shown that for any space-homogeneous model, the uniform measure becomes the stationary measure. However, the corresponding result for space-inhomogeneous model is not known. Here, we present a class of space-inhomogeneous QWs on the line and cycles in which the uniform measure is stationary. Furthermore, we briefly discuss a difference between QWs and RWs.



قيم البحث

اقرأ أيضاً

151 - Chusei Kiumi , Kei Saito 2021
Localization is a characteristic phenomenon of space-inhomogeneous quantum walks in one dimension, where particles remain localized at their initial position. Eigenvectors of time evolution operators are deeply related to the amount of trapping. In t his paper, we introduce the analytical method for the eigenvalue problem using a transfer matrix to quantitatively evaluate localization by deriving the time-averaged limit distribution and reveal the condition of strong trapping.
We study a spin-1/2-particle moving on a one dimensional lattice subject to disorder induced by a random, space-dependent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk operators, where the shift operati on is assumed to be deterministic. Each coin is an independent identically distributed random variable with values in the group of two dimensional unitary matrices. We derive sufficient conditions on the probability distribution of the coins such that the system exhibits dynamical localization. Put differently, the tunneling probability between two lattice sites decays rapidly for almost all choices of random coins and after arbitrary many time steps with increasing distance. Our findings imply that this effect takes place if the coin is chosen at random from the Haar measure, or some measure continuous with respect to it, but also for a class of discrete probability measures which support consists of two coins, one of them being the Hadamard coin.
We investigate continuous-time quantum walks of two indistinguishable particles (bosons, fermions or hard-core bosons) in one-dimensional lattices with nearest-neighbour interactions. The two interacting particles can undergo independent- and/or co-w alking dependent on both quantum statistics and interaction strength. We find that two strongly interacting particles may form a bound state and then co-walk like a single composite particle with statistics-dependent propagation speed. Such an effective single-particle picture of co-walking is analytically derived in the context of degenerate perturbation and the analytical results are well consistent with direct numerical simulation. In addition to implementing universal quantum computation and observing bound states, two-particle quantum walks offer a novel route to detecting quantum statistics. Our theoretical results can be examined in experiments of light propagations in two-dimensional waveguide arrays or spin-impurity dynamics of ultracold atoms in one-dimensional optical lattices.
In this paper, we consider periodicity for space-inhomogeneous quantum walks on the cycle. For isospectral coin cases, we propose a spectral analysis. Based on the analysis, we extend the result for periodicity for Hadamard walk to some isospectral c oin cases. For non-isospectral coin cases, we consider the the system that uses only one general coin at the origin and the identity coin at the other sites. In this case, we show that the periodicity of the general coin at the origin determines the periodicity for the whole system.
73 - Kei Saito 2017
The discrete-time quantum walk (QW) is determined by a unitary matrix whose component is complex number. Konno (2015) extended the QW to a walk whose component is quaternion.We call this model quaternionic quantum walk (QQW). The probability distribu tion of a class of QQWs is the same as that of the QW. On the other hand, a numerical simulation suggests that the probability distribution of a QQW is different from the QW. In this paper, we clarify the difference between the QQW and the QW by weak limit theorems for a class of QQWs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا