ﻻ يوجد ملخص باللغة العربية
We construct dynamical black hole solutions with a helical symmetry in AdS$_5$, called black resonators, as well as their horizonless limits, called geons. We introduce a cohomogeneity-1 metric describing a class of black resonators and geons whose isometry group is $Rtimes SU(2)$. This allows us to study them in a wide range of parameters. We obtain the phase diagram for the black resonators, geons, and Myers-Perry-AdS$_5$, where the black resonators emerge from the onset of a superradiant instability of the Myers-Perry-AdS$_5$ with equal angular momenta and are connected to the geons in the small horizon limit. The angular velocities of the black resonators always satisfy $Omega>1$ in units of the AdS radius. A black resonator is shown to have higher entropy than a Myers-Perry-AdS$_5$ black hole with the same asymptotic charges. This implies that the Myers-Perry-AdS$_5$ can dynamically evolve into the black resonator under the exact $SU(2)$-symmetry although its endpoint will be further unstable to $SU(2)$-violating perturbations.
Rapidly rotating Myers-Perry-AdS$_5$ (MPAdS$_5$) black holes are shown to be unstable against rotational superradiance of a Maxwell field. From the onset of the instability, time-periodic neutral black hole solutions equipped with a nontrivial electr
Black resonators and geons in global AdS are rapidly rotating, low-energy solutions with a helical Killing field. We study the linear mode stability of equal angular momenta, five-dimensional black resonators and geons under scalar, electromagnetic,
We study static black hole solutions with locally spherical horizons coupled to non-Abelian field in $mathcal{N}=4$ Chern-Simons AdS$_5$ supergravity. They are governed by three parameters associated to the mass, axial torsion and amplitude of the in
Minimal $D=5$ supergravity admits asymptotically globally AdS$_5$ gravitational solitons (strictly stationary, geodesically complete spacetimes with positive mass). We show that, like asymptotically flat gravitational solitons, these solutions satisf
Holography relates the quasinormal modes frequencies of AdS black holes to the pole structure of the dual field theory propagator. These modes thus provide the timescale for the approach to thermal equilibrium in the CFT. Here, we study how such pole