ﻻ يوجد ملخص باللغة العربية
We present the analysis of six {it Chandra} X-ray high-resolution observations of the black hole low-mass X-ray binary 4U~1630-47 taken during its 2012-2013 outburst. {rm Fe}~{sc XXVI} K$alpha$, K$beta$, {rm Fe}~{sc XXV} K$alpha$, K$beta$ and {rm Ca}~{sc XX} K$alpha$ blueshifted absorption lines were identified in the first four observations, which correspond to soft accretion states. The remaining observations, associated to intermediate and possibly hard accretion states, do not show significant absorption features down to equivalent width of 1 eV for both {rm Fe}~{sc XXVI} and {rm Fe}~{sc XXV}. We inferred wind launching radii between $1.2- 2.0$ ($10^{12}$ cm$/n$)$ times 10^{11}$~cm and column densities $N({rm H})> 10^{23}$ cm$^{-2}$. In the first four observations we found that thermal pressure is likely to be the dominant launching mechanism for the wind, although such conclusions depend on the assumed density. We used the spectral energy distributions obtained from our continuum modeling to compute thermal stability curves for all observations using the {sc xstar} photoionization code. We found that the absence of lines in the transitional state cannot be attributed to an evolution of the plasma caused by thermal instabilities derived from the change in the continuum spectrum. In contrast, the disappearance of the wind could indicate an acceleration of the flow or that the plasma has been exhausted during the soft state.
We present the X-ray spectral and timing analysis of the transient black hole X-ray binary 4U 1630-47, observed with the AstroSat, Chandra and MAXI space missions during its soft X-ray outburst in 2016. The outburst, from the rising phase until the p
Recent XMM-Newton observations of the black-hole candidate 4U 1630-47 during the 2012 outburst revealed three relativistically Doppler-shifted emission lines that were interpreted as arising from baryonic matter in the jet of this source. Here we rea
We report the results from an X-ray and near-infrared observation of the Galactic black hole binary 4U 1630--47 in the very high state, performed with {it Suzaku} and IRSF around the peak of the 2012 September-October outburst. The X-ray spectrum is
The mechanisms that drive disk winds are a window into the physical processes that underlie the disk. Stellar-mass black holes are an ideal setting in which to explore these mechanisms, in part because their outbursts span a broad range in mass accre
We have observed the Galactic black hole transient 4U 1630-47 during the decay of its 2016 outburst with Chandra and Swift to investigate the properties of the dust scattering halo created by the source. The scattering halo shows a structure that inc