ﻻ يوجد ملخص باللغة العربية
We have observed the Galactic black hole transient 4U 1630-47 during the decay of its 2016 outburst with Chandra and Swift to investigate the properties of the dust scattering halo created by the source. The scattering halo shows a structure that includes a bright ring between 80 and 240 surrounding the source, and a continuous distribution beyond 250. An analysis of the $^{12}$CO $J=1-0$ map and spectrum in the line of sight to the source indicate that a molecular cloud with a radial velocity of -79 km s$^{-1}$ (denoted MC -79) is the main scattering body that creates the bright ring. We found additional clouds in the line of sight, calculated their kinematic distances and resolved the well known near and far distance ambiguity for most of the clouds. At the favored far distance estimate of MC -79, the modeling of the surface brightness profile results in a distance to 4U 1630-47 of 11.5 $pm$ 0.3 kpc. If MC -79 is at the near distance, then 4U 1630-47 is at 4.7 $pm$ 0.3 kpc. Future Chandra, Swift, and sub-mm radio observations not only can resolve this ambiguity, but also would provide information regarding properties of dust and distribution of all molecular clouds along the line of sight. Using the results of this study we also discuss the nature of this source and the reasons for the anomalously low soft state observation observed during the 2010 decay.
We present the analysis of six {it Chandra} X-ray high-resolution observations of the black hole low-mass X-ray binary 4U~1630-47 taken during its 2012-2013 outburst. {rm Fe}~{sc XXVI} K$alpha$, K$beta$, {rm Fe}~{sc XXV} K$alpha$, K$beta$ and {rm Ca}
We present the X-ray spectral and timing analysis of the transient black hole X-ray binary 4U 1630-47, observed with the AstroSat, Chandra and MAXI space missions during its soft X-ray outburst in 2016. The outburst, from the rising phase until the p
We report the detection of a dust scattering halo around a recently discovered X-ray transient, Swift J174540.7-290015, which in early February of 2016 underwent one of the brightest outbursts (F_X ~ 5e-10 erg/cm^2/s) observed from a compact object i
We present the analysis of X-ray observations of the black hole binary 4U~1630$-$47 using relativistic reflection spectroscopy. We use archival data from the RXTE, Swift, and NuSTAR observatories, taken during different outbursts of the source betwee
Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and hence the feedback they provide to their surroundings, depends strongly on their c