ﻻ يوجد ملخص باللغة العربية
Topological semimetals feature a diversity of nodal manifolds including nodal points, various nodal lines and surfaces, and recently novel quantum states in non-Hermitian systems have been arousing widespread research interests. In contrast to Hermitian systems whose bulk nodal points must form closed manifolds, it is fascinating to find that for non-Hermitian systems exotic nodal manifolds can be bounded by exceptional points in the bulk band structure. Such exceptional points, at which energy bands coalesce with band conservation violated, are iconic for non-Hermitian systems. In this work, we show that a variety of nodal lines and drumheads with exceptional boundary can be realized on 2D and 3D honeycomb lattices through natural and physically feasible non-Hermitian processes. The bulk nodal Fermi-arc and drumhead states, although is analogous to, but should be essentially distinguished from the surface counterpart of Weyl and nodal-line semimetals, respectively, for which surface nodal-manifold bands eventually sink into bulk bands. Then we rigorously examine the bulk-boundary correspondence of these exotic states with open boundary condition, and find that these exotic bulk states are thereby undermined, showing the essential importance of periodic boundary condition for the existence of these exotic states. As periodic boundary condition is non-realistic for real materials, we furthermore propose a practically feasible electrical-circuit simulation, with non-Hermitian devices implemented by ordinary operational amplifiers, to emulate these extraordinary states.
Exceptional points (EPs) are degeneracies in open wave systems with coalescence of at least two energy levels and their corresponding eigenstates. In higher dimensions, more complex EP physics not found in two-state systems is observed. We consider t
Topological phenomena in non-Hermitian systems have recently become a subject of great interest in the photonics and condensed-matter communities. In particular, the possibility of observing topologically-protected edge states in non-Hermitian lattic
The usual concepts of topological physics, such as the Berry curvature, cannot be applied directly to non-Hermitian systems. We show that another object, the quantum metric, which often plays a secondary role in Hermitian systems, becomes a crucial q
The fermion doubling theorem plays a pivotal role in Hermitian topological materials. It states, for example, that Weyl points must come in pairs in three-dimensional semimetals. Here, we present an extension of the doubling theorem to non-Hermitian
An astroid-shaped loop of exceptional points (EPs), comprising four cusps, is found to spawn from the triple degeneracy point in the Brillouin zone (BZ) of a Lieb lattice with nearest-neighbor hoppings when non-Hermiticity is introduced. The occurren