ﻻ يوجد ملخص باللغة العربية
Random graphs are mathematical models that have applications in a wide range of domains. We study the following model where one adds ErdH{o}s--Renyi (ER) type perturbation to a random geometric graph. More precisely, assume $G_mathcal{X}^{*}$ is a random geometric graph sampled from a nice measure on a metric space $mathcal{X} = (X,d)$. The input observed graph $widehat{G}(p,q)$ is generated by removing each existing edge from $G_mathcal{X}^*$ with probability $p$, while inserting each non-existent edge to $G_mathcal{X}^{*}$ with probability $q$. We refer to such random $p$-deletion and $q$-insertion as ER-perturbation. Although these graphs are related to the objects in the continuum percolation theory, our understanding of them is still rather limited. In this paper we consider a localized version of the classical notion of clique number for the aforementioned ER-perturbed random geometric graphs: Specifically, we study the edge clique number for each edge in a graph, defined as the size of the largest clique(s) in the graph containing that edge. The clique number of the graph is simply the largest edge clique number. Interestingly, given a ER-perturbed random geometric graph, we show that the edge clique number presents two fundamentally different types of behaviors, depending on which type of randomness it is generated from. As an application of the above results, we show that by using a filtering process based on the edge clique number, we can recover the shortest-path metric of the random geometric graph $G_mathcal{X}^*$ within a multiplicative factor of $3$, from an ER-perturbed observed graph $widehat{G}(p,q)$, for a significantly wider range of insertion probability $q$ than in previous work.
Online routing in a planar embedded graph is central to a number of fields and has been studied extensively in the literature. For most planar graphs no $O(1)$-competitive online routing algorithm exists. A notable exception is the Delaunay triangula
For two graphs $G$ and $H$, write $G stackrel{mathrm{rbw}}{longrightarrow} H$ if $G$ has the property that every {sl proper} colouring of its edges yields a {sl rainbow} copy of $H$. We study the thresholds for such so-called {sl anti-Ramsey} prope
For two graphs $G$ and $H$, write $G stackrel{mathrm{rbw}}{longrightarrow} H$ if $G$ has the property that every emph{proper} colouring of its edges yields a emph{rainbow} copy of $H$. We study the thresholds for such so-called emph{anti-Ramsey} pr
We study some percolation problems on the complete graph over $mathbf N$. In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph. No specific assumption on the probability,
We study biplane graphs drawn on a finite planar point set $S$ in general position. This is the family of geometric graphs whose vertex set is $S$ and can be decomposed into two plane graphs. We show that two maximal biplane graphs---in the sense tha