ﻻ يوجد ملخص باللغة العربية
In many applications it is useful to replace the Moore-Penrose pseudoinverse (MPP) by a different generalized inverse with more favorable properties. We may want, for example, to have many zero entries, but without giving up too much of the stability of the MPP. One way to quantify stability is by how much the Frobenius norm of a generalized inverse exceeds that of the MPP. In this paper we derive finite-size concentration bounds for the Frobenius norm of $ell^p$-minimal general inverses of iid Gaussian matrices, with $1 leq p leq 2$. For $p = 1$ we prove exponential concentration of the Frobenius norm of the sparse pseudoinverse; for $p = 2$, we get a similar concentration bound for the MPP. Our proof is based on the convex Gaussian min-max theorem, but unlike previous applications which give asymptotic results, we derive finite-size bounds.
Estimating the rank of a corrupted data matrix is an important task in data science, most notably for choosing the number of components in principal component analysis. Significant progress on this task has been made using random matrix theory by cha
In this paper we prove the concavity of the $k$-trace functions, $Amapsto (text{Tr}_k[exp(H+ln A)])^{1/k}$, on the convex cone of all positive definite matrices. $text{Tr}_k[A]$ denotes the $k_{mathrm{th}}$ elementary symmetric polynomial of the eige
In this paper, we explicitly prove that statistical manifolds, related to exponential families and with flat structure connection have a Frobenius manifold structure. This latter object, at the interplay of beautiful interactions between topology and
In this paper, we introduce two new generalized inverses of matrices, namely, the $bra{i}{m}$-core inverse and the $pare{j}{m}$-core inverse. The $bra{i}{m}$-core inverse of a complex matrix extends the notions of the core inverse defined by Baksalar
We present some new results on the joint distribution of an arbitrary subset of the ordered eigenvalues of complex Wishart, double Wishart, and Gaussian hermitian random matrices of finite dimensions, using a tensor pseudo-determinant operator. Speci