ترغب بنشر مسار تعليمي؟ اضغط هنا

Ring modes supported by concentrated cubic nonlinearity

137   0   0.0 ( 0 )
 نشر من قبل Boris Malomed
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the one-dimensional Schroedinger equation on a ring, with the cubic term, of either self-attractive or repulsive sign, confined to a narrow segment. This setting can be realized in optics and Bose-Einstein condensates. For the nonlinearity coefficient represented by the delta-function, all stationary states are obtained in an exact analytical form. The states with positive chemical potentials are found in alternating bands for the cases of the self-repulsion and attraction, while solutions with negative chemical potentials exist only in the latter case. These results provide a possibility to obtain exact solutions for bandgap states in the nonlinear system. Approximating the delta-function by a narrow Gaussian, stability of the stationary modes is addressed through numerical computation of eigenvalues for small perturbations, and verified by simulations of the perturbed evolution. For positive chemical potentials, the stability is investigated in three lowest bands. In the case of the self-attraction, each band contains a stable subband, the transition to instability occurring with the increase of the total norm. As a result, multi-peak states may be stable in higher bands. In the case of the self-repulsion, a single-peak ground state is stable in the first band, while the two higher ones are populated by weakly unstable two- and four-peak excited states. In the case of the self-attraction and negative chemical potentials, single-peak modes feature instability which transforms them into persistently oscillating states.



قيم البحث

اقرأ أيضاً

We investigate competition between two phase transitions of the second kind induced by the self-attractive nonlinearity, viz., self-trapping of the leaky modes, and spontaneous symmetry breaking (SSB) of both fully trapped and leaky states. We use a one-dimensional mean-field model, which combines the cubic nonlinearity and a double-well-potential (DWP) structure with an elevated floor, which supports leaky modes (quasi-bound states) in the linear limit. The setting can be implemented in nonlinear optics and BEC. The order in which the SSB and self-trapping transitions take place with the growth of the nonlinearity strength depends on the height of the central barrier of the DWP: the SSB happens first if the barrier is relatively high, while self-trapping comes first if the barrier is lower. The SSB of the leaky modes is characterized by specific asymmetry of their radiation tails, which, in addition, feature a resonant dependence on the relation between the total size of the system and radiation wavelength. As a result of the SSB, the instability of symmetric modes initiates spontaneous Josephson oscillations. Collisions of freely moving solitons with the DWP structure admit trapping of an incident soliton into a state of persistent shuttle motion, due to emission of radiation. The study is carried out numerically, and basic results are explained by means of analytical considerations.
277 - Nir Dror , Boris A. Malomed 2011
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BECs) loaded into optical lattices, are often described by the nonlinear Schrodinger/Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model based on such a periodic potential, with the nonlinearity (attractive or repulsive) concentrated either at a single point or at a symmetric set of two points, which are represented, respectively, by a single {delta}-function or a combination of two {delta}-functions. This model gives rise to ordinary solitons or gap solitons (GSs), which reside, respectively, in the semi-infinite or finite gaps of the systems linear spectrum, being pinned to the {delta}-functions. Physical realizations of these systems are possible in optics and BEC, using diverse variants of the nonlinearity management. First, we demonstrate that the single {delta}-function multiplying the nonlinear term supports families of stable regular solitons in the self-attractive case, while a family of solitons supported by the attractive {delta}-function in the absence of the periodic potential is completely unstable. We also show that the {delta}-function can support stable GSs in the first finite gap in both the self-attractive and repulsive models. The stability analysis for the GSs in the second finite gap is reported too, for both signs of the nonlinearity. Alongside the numerical analysis, analytical approximations are developed for the solitons in the semi-infinite and first two finite gaps, with the single {delta}-function positioned at a minimum or maximum of the periodic potential. In the model with the symmetric set of two {delta}-functions, we study the effect of the spontaneous symmetry breaking of the pinned solitons. Two configurations are considered, with the {delta}-functions set symmetrically with respect to the minimum or maximum of the potential.
212 - Nir Dror , Boris A. Malomed , 2011
We investigate 1D and 2D radial domain-wall (DW) states in the system of two nonlinear-Schr{o}dinger/Gross-Pitaevskii equations, which are coupled by the linear mixing and by the nonlinear XPM (cross-phase-modulation). The system has straightforward applications to two-component Bose-Einstein condensates, and to the bimodal light propagation in nonlinear optics. In the former case, the two components represent different hyperfine atomic states, while in the latter setting they correspond to orthogonal polarizations of light. Conditions guaranteeing the stability of flat continuous wave (CW) asymmetric bimodal states are established, followed by the study of families of the corresponding DW patterns. Approximate analytical solutions for the DWs are found near the point of the symmetry-breaking bifurcation of the CW states. An exact DW solution is produced for ratio 3:1 of the XPM and SPM coefficients. The DWs between flat asymmetric states, which are mirror images to each other, are completely stable, and all other species of the DWs, with zero crossings in one or two components, are fully unstable. Interactions between two DWs are considered too, and an effective potential accounting for the attraction between them is derived analytically. Direct simulations demonstrate merger and annihilation of the interacting DWs. The analysis is extended for the system including single- and double-peak external potentials. Generic solutions for trapped DWs are obtained in a numerical form, and their stability is investigated. An exact stable solution is found for the DW trapped by a single-peak potential. In the 2D geometry, stable two-component vortices are found, with topological charges s=1,2,3. Radial oscillations of annular DW-shaped pulsons, with s=0,1,2, are studied too. A linear relation between the period of the oscillations and the mean radius of the DW ring is derived analytically.
94 - Elad Shamriz , Nir Dror , 2016
We report results of the analysis of the spontaneous symmetry breaking (SSB) in the basic (actually, simplest) model which is capable to produce the SSB phenomenology in the one-dimensional setting. It is based on the Gross-Pitaevskii - nonlinear Sch roedinger equation with the cubic self-attractive term and a double-well-potential built as an infinitely deep potential box split by a narrow (delta-functional) barrier. The barriers strength, epsilon, is the single free parameter of the scaled form of the model. It may be implemented in atomic Bose-Einstein condensates and nonlinear optics. The SSB bifurcation of the symmetric ground state (GS) is predicted analytically in two limit cases, viz., for deep or weak splitting of the potential box by the barrier. For the generic case, a variational approximation (VA) is elaborated. The analytical findings are presented along with systematic numerical results. Stability of stationary states is studied through the calculation of eigenvalues for small perturbations, and by means of direct simulations. The GS always undergoes the SSB bifurcation of the supercritical type, as predicted by the VA at moderate values of epsilon, although the VA fails at small epsilon, due to inapplicability of the underlying ansatz in that case. However, the latter case is correctly treated by the approximation based on a soliton ansatz. On top of the GS, the first and second excited states are studied too. The antisymmetric mode (the first excited state) is destabilized at a critical value of its norm. The second excited state undergoes the SSB bifurcation, like the GS, but, unlike it, the bifurcation produces an unstable asymmetric mode. All unstable modes tend to spontaneously reshape into the asymmetric GS.
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both, fundamental and vortex-carrying soliton states. The imaginary part of the lattice induces internal currents in the solitons that strongly affect their domains of existence and stability. The domain of stability for fundamental solitons can extend nearly up to the PT-symmetry breaking point, where the linear lattice spectrum becomes complex. Vortex solitons feature spatially asymmetric profiles in the PT-symmetric lattices, but they are found to still exist as stable states within narrow regions. Our results provide the first example of continuous families of stable three-dimensional propagating solitons supported by complex potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا