ﻻ يوجد ملخص باللغة العربية
Semitoric systems are a type of four-dimensional integrable system for which one of the integrals generates a global $S^1$-action; these systems were classified by Pelayo and Vu Ngoc in terms of five symplectic invariants. We introduce and study semitoric families, which are one-parameter families of integrable systems with a fixed $S^1$-action that are semitoric for all but finitely many values of the parameter, with the goal of developing a strategy to find a semitoric system associated to a given partial list of semitoric invariants. We also enumerate the possible behaviors of such families at the parameter values for which they are not semitoric, providing examples illustrating nearly all possible behaviors, which describes the possible limits of semitoric systems with a fixed $S^1$-action. Furthermore, we investigate how semitoric families behave under toric type blowups and blowdowns, and use this to prove that each Hirzebruch surface admits a semitoric family with certain desirable invariants related to the semitoric minimal model program. Finally, we give several explicit semitoric families on the first and second Hirzebruch surfaces showcasing various possible behaviors of such families which include new semitoric systems that, to our knowledge, are the first explicit systems verified to be semitoric on a compact manifold other than $S^2 times S^2$ .
Recently Pelayo-V~{u} Ngoc classified semitoric integrable systems in terms of five symplectic invariants. Using this classification we define a family of metrics on the space of semitoric integrable systems. The resulting metric space is incomplete and we construct the completion.
A semitoric integrable system $F=(J,H)$ on a symplectic $4$-manifold is simple if each fiber of $J$ contains at most one focus-focus critical point. Simple semitoric systems were classified about ten years ago by Pelayo-V~u Ngoc in terms of five inva
A symplectic semitoric manifold is a symplectic $4$-manifold endowed with a Hamiltonian $(S^1 times mathbb{R})$-action satisfying certain conditions. The goal of this paper is to construct a new symplectic invariant of symplectic semitoric manifolds,
About 6 years ago, semitoric systems were classified by Pelayo & Vu Ngoc by means of five invariants. Standard examples are the coupled spin oscillator on $mathbb{S}^2 times mathbb{R}^2$ and coupled angular momenta on $mathbb{S}^2 times mathbb{S}^2$,
We present an algebraic method to study four-dimensional toric varieties by lifting matrix equations from the special linear group ${rm SL}_2({mathbb Z})$ to its preimage in the universal cover of ${rm SL}_2({mathbb R})$. With this method we recover