ﻻ يوجد ملخص باللغة العربية
We present an algebraic method to study four-dimensional toric varieties by lifting matrix equations from the special linear group ${rm SL}_2({mathbb Z})$ to its preimage in the universal cover of ${rm SL}_2({mathbb R})$. With this method we recover the classification of two-dimensional toric fans, and obtain a description of their semitoric analogue. As an application to symplectic geometry of Hamiltonian systems, we give a concise proof of the connectivity of the moduli space of toric integrable systems in dimension four, recovering a known result, and extend it to the case of semitoric integrable systems with a fixed number of focus-focus points and which are in the same twisting index class. In particular, we show that any semitoric system with precisely one focus-focus singular point can be continuously deformed into a system in the same isomorphism class as the Jaynes-Cummings model from optics.
Semitoric systems are a type of four-dimensional integrable system for which one of the integrals generates a global $S^1$-action; these systems were classified by Pelayo and Vu Ngoc in terms of five symplectic invariants. We introduce and study semi
Let $X$ be a smooth irreducible complex algebraic variety of dimension $n$ and $L$ a very ample line bundle on $X$. Given a toric degeneration of $(X,L)$ satisfying some natural technical hypotheses, we construct a deformation ${J_s}$ of the complex
We consider an analogue of Wittens $SL(2,mathbb{Z})$ action on three-dimensional QFTs with $U(1)$ symmetry for $2k$-dimensional QFTs with $mathbb{Z}_2$ $(k-1)$-form symmetry. We show that the $SL(2,mathbb{Z})$ action only closes up to a multiplicatio
In recent papers, summarized in survey [1], we construct a number of examples of non standard lagrangian tori on compact toric varieties and as well on certain non toric varieties which admit pseudotoric structures. Using this pseudotoric technique w
For a positive integer $g$, let $mathrm{Sp}_{2g}(R)$ denote the group of $2g times 2g$ symplectic matrices over a ring $R$. Assume $g ge 2$. For a prime number $ell$, we give a self-contained proof that any closed subgroup of $mathrm{Sp}_{2g}(mathbb{