ﻻ يوجد ملخص باللغة العربية
When a major outage occurs on a distribution system due to extreme events, microgrids, distributed generators, and other local resources can be used to restore critical loads and enhance resiliency. This paper proposes a decision-making method to determine the optimal restoration strategy coordinating multiple sources to serve critical loads after blackouts. The critical load restoration problem is solved by a two-stage method with the first stage deciding the post-restoration topology and the second stage determining the set of loads to be restored and the outputs of sources. In the second stage, the problem is formulated as a mixed-integer semidefinite program. The objective is maximizing the number of loads restored, weighted by their priority. The unbalanced three-phase power flow constraint and operational constraints are considered. An iterative algorithm is proposed to deal with integer variables and can attain the global optimum of the critical load restoration problem by solving a few semidefinite programs under two conditions. The effectiveness of the proposed method is validated by numerical simulation with the modified IEEE 13-node test feeder and the modified IEEE 123-node test feeder under plenty of scenarios. The results indicate that the optimal restoration strategy can be determined efficiently in most scenarios.
Repair crews (RCs) and mobile power sources (MPSs) are critical resources for distribution system (DS) outage management after a natural disaster. However, their logistics is not well investigated. We propose a resilient scheme for disaster recovery
Self-healing capability is one of the most critical factors for a resilient distribution system, which requires intelligent agents to automatically perform restorative actions online, including network reconfiguration and reactive power dispatch. The
Mobile energy storage systems (MESSs) provide promising solutions to enhance distribution system resilience in terms of mobility and flexibility. This paper proposes a rolling integrated service restoration strategy to minimize the total system cost
Because failures in distribution systems caused by extreme weather events directly result in consumers outages, this paper proposes a state-based decision-making model with the objective of mitigating loss of load to improve the distribution system r
The resilience of cyberphysical systems to denial-of-service (DoS) and integrity attacks is studied in this paper. The cyberphysical system is modeled as a linear structured system, and its resilience to an attack is interpreted in a graph theoretica