ﻻ يوجد ملخص باللغة العربية
We show how new and upcoming advances in the age of time-domain and multi-wavelength astronomy will open up a new venue to probe the diversity of SN~Ia. We discuss this in the context of the ELT (ESO), as well as space based instrument such as James Webb Space Telescope (JWST). As examples we demonstrate how the power of very early observations, within hours to days after the explosion, and very late-time observations, such as light curves and mid-infrared spectra beyond 3 years, can be used to probe the link to progenitors and explosion scenarios. We identify the electron-capture cross sections of Cr, Mn, and Ni/Co as one of the limiting factors we will face in the future.
Searches for circumstellar material around Type Ia supernovae (SNe Ia) are one of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here we report radio observa
The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extr
Since the very beginning of astronomy the location of objects on the sky has been a fundamental observational quantity that has been taken for granted. While precise two dimensional positional information is easy to obtain for observations in the ele
We examine the late-time (t > 200 days after peak brightness) spectra of Type Iax supernovae (SNe Iax), a low-luminosity, low-energy class of thermonuclear stellar explosions observationally similar to, but distinct from, Type Ia supernovae. We prese
We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe-I) PTF12dam and iPTF13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at lat