ترغب بنشر مسار تعليمي؟ اضغط هنا

Late-time Spectroscopy of Type Iax Supernovae

130   0   0.0 ( 0 )
 نشر من قبل Ryan J. Foley
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the late-time (t > 200 days after peak brightness) spectra of Type Iax supernovae (SNe Iax), a low-luminosity, low-energy class of thermonuclear stellar explosions observationally similar to, but distinct from, Type Ia supernovae. We present new spectra of SN 2014dt, resulting in the most complete published late-time spectral sequence of a SN Iax. At late times, SNe Iax have generally similar spectra, all with a similar continuum shape and strong forbidden-line emission. However, there is also significant diversity where some late-time SN Iax spectra display narrow P-Cygni features and a continuum indicative of a photosphere in addition to strong narrow forbidden lines, while others have no obvious P-Cygni features, strong broad forbidden lines, and weak narrow forbidden lines. Finally, some SNe Iax have spectra intermediate to these two varieties with weak P-Cygni features and broad/narrow forbidden lines of similar strength. We find that SNe Iax with strong broad forbidden lines also tend to be more luminous and have higher-velocity ejecta at peak brightness. We estimate blackbody and kinematic radii of the late-time photosphere, finding the latter an order of magnitude larger than the former. We propose a two-component model that solves this discrepancy and explains the diversity of the late-time spectra of SNe Iax. In this model, the broad forbidden lines originate from the SN ejecta, while the photosphere, P-Cygni lines, and narrow forbidden lines originate from a wind launched from the remnant of the progenitor white dwarf and is driven by the radioactive decay of newly synthesized material left in the remnant. The relative strength of the two components accounts for the diversity of late-time SN Iax spectra. This model also solves the puzzle of a long-lived photosphere and slow late-time decline of SNe Iax. (Abridged)



قيم البحث

اقرأ أيضاً

Herein we analyse late-time (post-plateau; 103 < t < 1229 d) optical spectra of low-redshift (z < 0.016), hydrogen-rich Type IIP supernovae (SNe IIP). Our newly constructed sample contains 91 nebular spectra of 38 SNe IIP, which is the largest datase t of its kind ever analysed in one study, and many of the objects have complementary photometric data. We determined the peak and total luminosity, velocity of the peak, HWHM intensity, and profile shape for many emission lines. Temporal evolution of these values and various flux ratios are studied. We also investigate the correlations between these measurements and photometric observables, such as the peak and plateau absolute magnitudes and the late-time light curve decline rates in various optical bands. The strongest and most robust result we find is that the luminosities of all spectral features (except those of helium) tend to be higher in objects with steeper late-time V-band decline rates. A steep late-time V-band slope likely arises from less efficient trapping of gamma-rays and positrons, which could be caused by multidimensional effects such as clumping of the ejecta or asphericity of the explosion itself. Furthermore, if gamma-rays and positrons can escape more easily, then so can photons via the observed emission lines, leading to more luminous spectral features. It is also shown that SNe IIP with larger progenitor stars have ejecta with a more physically extended oxygen layer that is well-mixed with the hydrogen layer. In addition, we find a subset of objects with evidence for asymmetric Ni-56 ejection, likely bipolar in shape. We also compare our observations to theoretical late-time spectral models of SNe IIP from two separate groups and find moderate-to-good agreement with both sets of models. Our SNe IIP spectra are consistent with models of 12-15 M_Sun progenitor stars having relatively low metallicity (Z $le$ 0.01).
A non-local-thermodynamic-equilibrium (NLTE) level population model of the first and second ionisation stages of iron, nickel and cobalt is used to fit a sample of XShooter optical + near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia). From th e ratio of the NIR lines to the optical lines limits can be placed on the temperature and density of the emission region. We find a similar evolution of these parameters across our sample. Using the evolution of the Fe II 12$,$570$,mathring{A},$to 7$,$155$,mathring{A},$line as a prior in fits of spectra covering only the optical wavelengths we show that the 7200$,mathring{A},$feature is fully explained by [Fe II] and [Ni II] alone. This approach allows us to determine the abundance of Ni II$,$/$,$Fe II for a large sample of 130 optical spectra of 58 SNe Ia with uncertainties small enough to distinguish between Chandrasekhar mass (M$_{text{Ch}}$) and sub-Chandrasekhar mass (sub-M$_{text{Ch}}$) explosion models. We conclude that the majority (85$%$) of normal SNe Ia have a Ni/Fe abundance that is in agreement with predictions of sub-M$_{text{Ch}}$ explosion simulations of $sim Z_odot$ progenitors. Only a small fraction (11$%$) of objects in the sample have a Ni/Fe abundance in agreement with M$_{text{Ch}}$ explosion models.
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
178 - M. R. Magee 2018
Recent studies have argued that the progenitor system of type Iax supernovae must consist of a carbon-oxygen white dwarf accreting from a helium star companion. Based on existing explosion models invoking the pure deflagration of carbon-oxygen white dwarfs, we investigate the likelihood of producing spectral features due to helium in type Iax supernovae. From this scenario, we select those explosion models producing ejecta and $^{56}$Ni masses that are broadly consistent with those estimated for type Iax supernovae (0.014 - 0.478~$M_{odot}$ and $sim0.003$ - 0.183~$M_{odot}$, respectively). To this end, we present a series of models of varying luminosities ($-18.4 lesssim M_{rm{V}} lesssim -14.5$~mag) with helium abundances accounting for up to $sim$36% of the ejecta mass, and covering a range of epochs beginning a few days before B$-$band maximum to approximately two weeks after maximum. We find that the best opportunity for detecting ion{He}{i} features is at near-infrared wavelengths, and in the post-maximum spectra of the fainter members of this class. We show that the optical spectrum of SN~2007J is potentially consistent with a large helium content (a few 10$^{-2}~M_{odot}$), but argue that current models of accretion and material stripping from a companion struggle to produce compatible scenarios. We also investigate the presence of helium in all objects with near-infrared spectra. We show that SNe~2005hk, 2012Z, and 2015H contain either no helium or their helium abundances are constrained to much lower values ($lesssim$10$^{-3}~M_{odot}$). Our results demonstrate the differences in helium content among type Iax supernovae, perhaps pointing to different progenitor channels. Either SN~2007J is an outlier in terms of its progenitor system, or it is not a true member of the type Iax supernova class.
The late-time spectra of Type Ia supernovae (SNe Ia) are powerful probes of the underlying physics of their explosions. We investigate the late-time optical and near-infrared spectra of seven SNe Ia obtained at the VLT with XShooter at $>$200 d after explosion. At these epochs, the inner Fe-rich ejecta can be studied. We use a line-fitting analysis to determine the relative line fluxes, velocity shifts, and line widths of prominent features contributing to the spectra ([Fe II], [Ni II], and [Co III]). By focussing on [Fe II] and [Ni II] emission lines in the ~7000-7500 AA region of the spectrum, we find that the ratio of stable [Ni II] to mainly radioactively-produced [Fe II] for most SNe Ia in the sample is consistent with Chandrasekhar-mass delayed-detonation explosion models, as well as sub-Chandrasekhar mass explosions that have metallicity values above solar. The mean measured Ni/Fe abundance of our sample is consistent with the solar value. The more highly ionised [Co III] emission lines are found to be more centrally located in the ejecta and have broader lines than the [Fe II] and [Ni II] features. Our analysis also strengthens previous results that SNe Ia with higher Si II velocities at maximum light preferentially display blueshifted [Fe II] 7155 AA lines at late times. Our combined results lead us to speculate that the majority of normal SN Ia explosions produce ejecta distributions that deviate significantly from spherical symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا