ﻻ يوجد ملخص باللغة العربية
It has been observed in multiple lattice determinations of isovector axial and pseudoscalar nucleon form factors, that, despite the fact that the partial conservation of the axialvector current is fulfilled on the level of correlation functions, the corresponding relation for form factors (sometimes called the generalized Goldberger-Treiman relation in the literature) is broken rather badly. In this work we trace this difference back to excited state contributions and propose a new projection method that resolves this problem. We demonstrate the efficacy of this method by computing the axial and pseudoscalar form factors as well as related quantities on ensembles with two flavors of improved Wilson fermions using pion masses down to 150 MeV. To this end, we perform the $z$-expansion with analytically enforced asymptotic behaviour and extrapolate to the physical point.
We use a continuum quark+diquark approach to the nucleon bound-state problem in relativistic quantum field theory to deliver parameter-free predictions for the nucleon axial and induced pseudoscalar form factors, $G_A$ and $G_P$, and unify them with
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a
We present first results on the axial and pseudoscalar $Delta$ form factors. The analysis is carried out in the quenched approximation where statistical errors are small and the lattice set-up can be investigated relatively quickly. We also present a
We present a lattice QCD calculation of the $Delta(1232)$ matrix elements of the axial-vector and pseudoscalar currents. The decomposition of these matrix elements into the appropriate Lorentz invariant form factors is carried out and the techniques