ترغب بنشر مسار تعليمي؟ اضغط هنا

Solving the PCAC puzzle for nucleon axial and pseudoscalar form factors

77   0   0.0 ( 0 )
 نشر من قبل Thomas Wurm
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been observed in multiple lattice determinations of isovector axial and pseudoscalar nucleon form factors, that, despite the fact that the partial conservation of the axialvector current is fulfilled on the level of correlation functions, the corresponding relation for form factors (sometimes called the generalized Goldberger-Treiman relation in the literature) is broken rather badly. In this work we trace this difference back to excited state contributions and propose a new projection method that resolves this problem. We demonstrate the efficacy of this method by computing the axial and pseudoscalar form factors as well as related quantities on ensembles with two flavors of improved Wilson fermions using pion masses down to 150 MeV. To this end, we perform the $z$-expansion with analytically enforced asymptotic behaviour and extrapolate to the physical point.



قيم البحث

اقرأ أيضاً

We use a continuum quark+diquark approach to the nucleon bound-state problem in relativistic quantum field theory to deliver parameter-free predictions for the nucleon axial and induced pseudoscalar form factors, $G_A$ and $G_P$, and unify them with the pseudoscalar form factor $G_5$ or, equivalently, the pion-nucleon form factor $G_{pi NN}$. We explain how partial conservation of the axial-vector current and the associated Goldberger-Treiman relation are satisfied once all necessary couplings of the external current to the building blocks of the nucleon are constructed consistently; in particular, we fully resolve the seagull couplings to the diquark-quark vertices associated with the axial-vector and pseudoscalar currents. Among the results we describe, the following are worth highlighting. A dipole form factor defined by an axial charge $g_A=G_A(0)=1.25(3)$ and a mass-scale $M_A = 1.23(3) m_N$, where $m_N$ is the nucleon mass, can accurately describe the pointwise behavior of $G_A$. Concerning $G_P$, we obtain the pseudoscalar charge $g_p^ast = 8.80(23)$, and find that the pion pole dominance approach delivers a reliable estimate of the directly computed result. Our computed value of the pion-nucleon coupling constant, $g_{pi NN}/m_N =14.02(33)/{rm GeV}$ is consistent with a Roy--Steiner-equation analysis of pion-nucleon scattering. We also observe a marked suppression of the size of the $d$-quark component relative to that of the $u$-quark in the ratio $g_A^d/g_A^u=-0.16(2)$, which highlights the presence of strong diquark correlations inside the nucleon -- both scalar and axial-vector, with the scalar diquark being dominant.
115 - C. Alexandrou 2020
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the stra nge and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis.
246 - C. Alexandrou 2010
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a re investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
We present first results on the axial and pseudoscalar $Delta$ form factors. The analysis is carried out in the quenched approximation where statistical errors are small and the lattice set-up can be investigated relatively quickly. We also present a n analysis with a hybrid action using staggered sea quarks and domain-wall valence fermions.
142 - C. Alexandrou 2013
We present a lattice QCD calculation of the $Delta(1232)$ matrix elements of the axial-vector and pseudoscalar currents. The decomposition of these matrix elements into the appropriate Lorentz invariant form factors is carried out and the techniques to calculate the form factors are developed and tested using quenched configurations. Results are obtained for 2+1 domain wall fermions and within a hybrid scheme with domain wall valence and staggered sea quarks. Two Goldberger-Treiman type relations connecting the axial to the pseudoscalar effective couplings are derived. These and further relations based on the pion-pole dominance hypothesis are examined using the lattice QCD results, finding support for their validity. Utilizing lattice QCD results on the axial charges of the nucleon and the $Delta$, as well as the nucleon-to-$Delta$ transition coupling constant, we perform a combined chiral fit to all three quantities and study their pion mass dependence as the chiral limit is approached.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا