ﻻ يوجد ملخص باللغة العربية
We compute the nucleon axial and induced pseudoscalar form factors using three ensembles of gauge configurations, generated with dynamical light quarks with mass tuned to approximately their physical value. One of the ensembles also includes the strange and charm quarks with their mass close to physical. The latter ensemble has large statistics and finer lattice spacing and it is used to obtain final results, while the other two are used for assessing volume effects. The pseudoscalar form factor is also computed using these ensembles. We examine the momentum dependence of these form factors as well as relations based on pion pole dominance and the partially conserved axial-vector current hypothesis.
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a
We present a lattice QCD calculation of the $Delta(1232)$ matrix elements of the axial-vector and pseudoscalar currents. The decomposition of these matrix elements into the appropriate Lorentz invariant form factors is carried out and the techniques
We report a calculation of the nucleon axial form factors $G_A^q(Q^2)$ and $G_P^q(Q^2)$ for all three light quark flavors $qin{u,d,s}$ in the range $0leq Q^2lesssim 1.2text{ GeV}^2$ using lattice QCD. This work was done using a single ensemble with p
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a l
We present the first calculation on the $Delta$ axial-vector and pseudoscalar form factors using lattice QCD. Two Goldberger-Treiman relations are derived and examined. A combined chiral fit is performed to the nucleon axial charge, N to $Delta$ axia