ﻻ يوجد ملخص باللغة العربية
Lie group methods are applied to the time-dependent, monoenergetic neutron diffusion equation in materials with spatial and time dependence. To accomplish this objective, the underlying 2nd order partial differential equation (PDE) is recast as an exterior differential system so as to leverage the isovector symmetry analysis approach. Some of the advantages of this method as compared to traditional symmetry analysis approaches are revealed through its use in the context of a 2nd order PDE. In this context, various material properties appearing in the mathematical model (e.g., a diffusion coefficient and macroscopic cross section data) are left as arbitrary functions of space and time. The symmetry analysis that follows is restricted to a search for translation and scaling symmetries; consequently the Lie derivative yields specific material conditions that must be satisfied in order to maintain the presence of these important similarity transformations. The principal outcome of this work is thus the determination of analytic material property functions that enable the presence of various translation and scaling symmetries within the time- dependent, monoenergetic neutron diffusion equation. The results of this exercise encapsulate and generalize many existing results already appearing in the literature. While the results contained in this work are primarily useful as phenomenological guides pertaining to the symmetry behavior of the neutron diffusion equation under certain assumptions, they may eventually be useful in the construction of exact solutions to the underlying mathematical model. The results of this work are also useful as a starting point or framework for future symmetry analysis studies pertaining to the neutron transport equation and its many surrogates.
We consider the semi-classical limit for the Gross-Pitaevskii equation. In order to consider non-trivial boundary conditions at infinity, we work in Zhidkov spaces rather than in Sobolev spaces. For the usual cubic nonlinearity, we obtain a point-wis
An algebraic lower bound on the energy decay for solutions of the advection-diffusion equation in $mathbb{R}^d$ with $d=2,3$ is derived using the Fourier splitting method. Motivated by a conjecture on mixing of passive scalars in fluids, a lower boun
The long-time asymptotic behavior of solutions to the focusing nonlinear Schrodinger (NLS) equation on the line with symmetric, nonzero boundary conditions at infinity is studied in the case of initial conditions that allow for the presence of discre
A nonlinear parabolic equation of sixth order is analyzed. The equation arises as a reduction of a model from quantum statistical mechanics, and also as the gradient flow of a second-order information functional with respect to the $L^2$-Wasserstein
The conservation of translation as a symmetry in two-dimensional systems with interaction is a classical subject of statistical mechanics. Here we establish such a result for Gibbsian particle systems with two-body interaction, where the interesting