ترغب بنشر مسار تعليمي؟ اضغط هنا

A finiteness theorem for the Brauer group of K3 surfaces in odd characteristic

157   0   0.0 ( 0 )
 نشر من قبل Alexei Skorobogatov
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $k$ be a field finitely generated over the finite field $mathbb F_p$ of odd characteristic $p$. For any K3 surface $X$ over $k$ we prove that the prime to $p$ component of the cokernel of the natural map $Br(k)to Br(X)$ is finite.



قيم البحث

اقرأ أيضاً

130 - Daniel Bragg 2019
Deligne showed that every K3 surface over an algebraically closed field of positive characteristic admits a lift to characteristic 0. We show the same is true for a twisted K3 surface. To do this, we study the versal deformation spaces of twisted K3 surfaces, which are particularly interesting when the characteristic divides the order of the Brauer class. We also give an algebraic construction of certain moduli spaces of twisted K3 surfaces over $mathrm{Spec}mathbf{Z}$ and apply our deformation theory to study their geometry. As an application of our results, we show that every derived equivalence between twisted K3 surfaces in positive characteristic is orientation preserving.
104 - Daniel Bragg , Ziquan Yang 2021
We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization of K3 surfaces isogenous to a given K3 surface $X$ in terms of certain integral sublattices of the second rational $ell$-adic and crystalline coh omology groups of $X$. This is a positive characteristic analog of a result of Huybrechts, and extends results of the second author. We give applications to the reduction types of K3 surfaces and to the surjectivity of the period morphism. To prove these results we describe a theory of B-fields and Mukai lattices in positive characteristic, which may be of independent interest. We also prove some results on lifting twisted Fourier--Mukai equivalences to characteristic 0, generalizing results of Lieblich and Olsson.
182 - Amit Hogadi 2008
Let $k$ be a field and $X/k$ be a smooth quasiprojective orbifold. Let $Xto underline{X}$ be its coarse moduli space. In this paper we study the Brauer group of $X$ and compare it with the Brauer group of the smooth locus of $underline{X}$.
Classifying elements of the Brauer group of a variety X over a p-adic field according to the p-adic accuracy needed to evaluate them gives a filtration on Br X. We show that, on the p-torsion, this filtration coincides with a modified version of that defined by Katos Swan conductor, and that the refined Swan conductor controls how the evaluation maps vary on p-adic discs, giving a geometric characterisation of the refined Swan conductor. We give applications to the study of rational points on varieties over number fields.
135 - Daniel Bragg , Max Lieblich 2018
We develop a theory of twistor spaces for supersingular K3 surfaces, extending the analogy between supersingular K3 surfaces and complex analytic K3 surfaces. Our twistor spaces are obtained as relative moduli spaces of twisted sheaves on universal g erbes associated to the Brauer groups of supersingular K3 surfaces. In rank 0, this is a geometric incarnation of the Artin-Tate isomorphism. Twistor spaces give rise to curves in moduli spaces of twisted supersingular K3 surfaces, analogous to the analytic moduli space of marked K3 surfaces. We describe a theory of crystals for twisted supersingular K3 surfaces and a twisted period morphism from the moduli space of twisted supersingular K3 surfaces to this space of crystals. As applications of this theory, we give a new proof of the Ogus-Torelli theorem modeled on Verbitskys proof in the complex analytic setting and a new proof of the result of Rudakov-Shafarevich that supersingular K3 surfaces have potentially good reduction. These proofs work in characteristic 3, filling in the last remaining gaps in the theory. As a further application, we show that each component of the supersingular locus in each moduli space of polarized K3 surfaces is unirational.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا