ﻻ يوجد ملخص باللغة العربية
Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated electrons in solids. In this work we realize the Hubbard Hamiltonian and search for specific patterns within the individual images of many realizations of strongly correlated ultracold fermions in an optical lattice. Upon doping a cold-atom antiferromagnet we find consistency with geometric strings, entities that may explain the relationship between hole motion and spin order, in both pattern-based and conventional observables. Our results demonstrate the potential for pattern recognition to provide key insights into cold-atom quantum many-body systems.
Topological phases, like the celebrated Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, non-local string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlatio
Polarons are among the most fundamental quasiparticles emerging in interacting many-body systems, forming already at the level of a single mobile dopant. In the context of the two-dimensional Fermi-Hubbard model, such polarons are predicted to form a
Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyze and classify such snapshots of ultracold atoms. Specifically, we compare the data from
The mechanism of fermionic pairing is the key to understanding various phenomena such as high-temperature superconductivity and the pseudogap phase in cuprate materials. We study the pair correlations in the attractive Hubbard model using ultracold f
We study the interplay between population imbalance in a two-component fermionic system and nearest-neighbor interaction using matrix product states method. Our analysis reveals the existence of a new type of Fulde-Ferrell-Larkin-Ovchinnikov phase in