ﻻ يوجد ملخص باللغة العربية
Topological phases, like the celebrated Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, non-local string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems due to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of non-local spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique demonstrates how topological order can directly be measured in experiments and it can be extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.
Understanding strongly correlated quantum many-body states is one of the most difficult challenges in modern physics. For example, there remain fundamental open questions on the phase diagram of the Hubbard model, which describes strongly correlated
Mott insulators are paradigms of strongly correlated physics, giving rise to phases of matter with novel and hard-to-explain properties. Extending the typical SU(2) symmetry of Mott insulators to SU($N$) is predicted to give exotic quantum magnetism
The repulsive Hubbard Hamiltonian is one of the foundational models describing strongly correlated electrons and is believed to capture essential aspects of high temperature superconductivity. Ultracold fermions in optical lattices allow for the simu
Open many-body quantum systems have recently gained renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. A series of results in diverse setups is presented, based on
The interplay between magnetism and doping is at the origin of exotic strongly correlated electronic phases and can lead to novel forms of magnetic ordering. One example is the emergence of incommensurate spin-density waves with a wave vector that do