ﻻ يوجد ملخص باللغة العربية
Amplitude and phase are the basic properties of every wave phenomena; as long as optical waves are concerned, the ability to act on these variables is at the root of a wealth of switching devices. To quantify the performance of an optical switching device, an essential aspect is to determine the tradeoff between the insertion loss and the amplitude or phase modulation depth. Here it is shown that every switching optical device is subject to such a tradeoff, intrinsically connected to the dielectric response of the materials employed inside the switching element itself. This limit finds its roots in fundamental physics, as it directly derives from Maxwells equations for linear dielectrics, and is hence applicable to a wide class of optical components. Furthermore it results that concepts as filtering, resonance and critical coupling could be of advantage in approaching the limit.
We present a joint theoretical and experimental characterization of thermo-refractive noise in high quality factor ($Q$), small mode volume ($V$) optical microcavities. Analogous to well-studied stability limits imposed by Brownian motion in macrosco
Increasing the refractive index available for optical and nanophotonic systems opens new vistas for design: for applications ranging from broadband metalenses to ultrathin photovoltaics to high-quality-factor resonators, higher index directly leads t
At visible and infrared frequencies, metals show tantalizing promise for strong subwavelength resonances, but material loss typically dampens the response. We derive fundamental limits to the optical response of absorptive systems, bounding the large
Metasurfaces are optically thin metamaterials that promise complete control of the wavefront of light but are primarily used to control only the phase of light. Here, we present an approach, simple in concept and in practice, that uses meta-atoms wit
Spin-momentum locking of evanescent waves describes the relationship between the propagation constant of an evanescent mode and the polarization of its electromagnetic field, giving rise to applications in light nano-routing and polarimetry among man