ﻻ يوجد ملخص باللغة العربية
One of the most exciting properties of two dimensional materials is their sensitivity to external tuning of the electronic properties, for example via electric field or strain. Recently discovered analogues of phosphorene, group-IV monochalcogenides (MX with M = Ge, Sn and X = S, Se, Te), display several interesting phenomena intimately related to the in-plane strain, such as giant piezoelectricity and multiferroicity, which combine ferroelastic and ferroelectric properties. Here, using calculations from first principles, we reveal for the first time giant intrinsic spin Hall conductivities (SHC) in these materials. In particular, we show that the SHC resonances can be easily tuned by combination of strain and doping and, in some cases, strain can be used to induce semiconductor to metal transitions that make a giant spin Hall effect possible even in absence of doping. Our results indicate a new route for the design of highly tunable spintronics devices based on two-dimensional materials.
Based on first-principles calculations, we have found a family of two-dimensional (2D) transition-metal chalcogenides MX$_5$ (M = Zr, Hf and X = S, Se and Te) can host quantum spin Hall (QSH) effect. The molecular dynamics (MD) simulation indicate th
The anomalous Hall effect in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling is studied within the Kubo-Streda formalism in the presence of pointlike potential impurities. We find that all contributions to the anomalous Hall c
We report a giant spin Hall effect (SHE) in {beta}-Ta that generates spin currents intense enough to induce efficient spin-transfer-torque switching of ferromagnets, thereby providing a new approach for controlling magnetic devices that can be superi
Recent years have witnessed tremendous success in the discovery of topological states of matter. Particularly, sophisticated theoretical methods in time-reversal-invariant topological phases have been developed, leading to the comprehensive search of
The electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied