ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum anomalous Hall effect in two-dimensional magnetic insulator heterojunctions

76   0   0.0 ( 0 )
 نشر من قبل Qimin Yan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent years have witnessed tremendous success in the discovery of topological states of matter. Particularly, sophisticated theoretical methods in time-reversal-invariant topological phases have been developed, leading to the comprehensive search of crystal database and the prediction of thousands of new topological materials. In contrast, the discovery of magnetic topological phases that break time reversal is still limited to several exemplary materials because the coexistence of magnetism and topological electronic band structure is rare in a single compound. To overcome this challenge, we propose an alternative approach to realize the quantum anomalous Hall (QAH) effect, a typical example of magnetic topological phase, via engineering two-dimensional (2D) magnetic van der Waals heterojunctions. Instead of a single magnetic topological material, we search for the combinations of two 2D (typically trivial) magnetic insulator compounds with specific band alignment so that they can together form a type-III heterojunction with topologically non-trivial band structure. By combining the data-driven materials search, first principles calculations, and the symmetry-based analytical models, we identify 8 type-III heterojunctions consisting of 2D ferromagnetic insulator materials from a family of 2D monolayer MXY compounds (M = metal atoms, X = S, Se, Te, Y = F, Cl, Br, I) as a set of candidates for the QAH effect. In particular, we directly calculate the topological invariant (Chern number) and chiral edge states in the MnNF/MnNCl heterojunction with ferromagnetic stacking. This work illustrates how data-driven material science can be combined with symmetry-based physical principles to guide the search for novel heterojunction-based quantum materials hosting the QAH effect and other exotic quantum states in general.



قيم البحث

اقرأ أيضاً

Magnetic impurities play an important role in many spintronics-related materials. Motivated by this fact, we study the anomalous Hall effect in the presence of magnetic impurities, focusing on two-dimensional electron systems with Rashba spin-orbit c oupling. We find a highly nonlinear dependence on the impurity polarization, including possible sign changes. At small impurity magnetizations, this is a consequence of the remarkable result that the linear term is independent of the spin-orbit coupling strength. Near saturation of the impurity spins, the anomalous Hall conductivity can be resonantly enhanced, due to interference between potential and magnetic scattering.
The polarity-tunable anomalous Hall effect (AHE) is useful for electronic device applications. Here in a magnetic topological insulator MnBi2Te4 grown by molecular beam epitaxy, we report the polarity change of the AHE by increasing the temperature o r tuning the gate bias. This is possible because the anomalous Hall response is composed of two competing contributions with opposite polarities. The negative contribution is intrinsic to MnBi2Te4, follows an ambipolar gate response and has a larger coercivity with increasing thickness. Meanwhile, the positive one has a coercivity that is about one order of magnitude greater than the negative one, dominates the Hall response at higher temperatures, is more tunable by a gate bias and vanishes by increasing the thickness of the thin film. One possible explanation for the additional positive AHE is an extra surface ferromagnetism caused by the surface-state-mediated RKKY interaction among magnetic impurities on the surface. Our work provides the understanding of the AHE of MnBi2Te4, and paves the way for many device applications, e.g. energy-efficient voltage-controlled memory.
The anomalous Hall effect in a magnetic two-dimensional electron gas with Rashba spin-orbit coupling is studied within the Kubo-Streda formalism in the presence of pointlike potential impurities. We find that all contributions to the anomalous Hall c onductivity vanish to leading order in disorder strength when both chiral subbands are occupied. In the situation that only the majority subband is occupied, all terms are finite in the weak scattering limit and the total anomalous Hall conductivity is dominated by skew scattering. We compare our results to previous treatments and resolve some of the discrepancies present in the literature.
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Dopin g topological insulators with random magnetic impurities could realize the QAH state, but magnetic order is difficult to establish experimentally in the bulk insulating limit. Here we predict that the single quintuple layer of GdBiTe3 film could be a stoichiometric QAH insulator based on ab-initio calculations, which explicitly demonstrate ferromagnetic order and chiral edge states inside the bulk gap. We further investigate the topological quantum phase transition by tuning the lattice constant and interactions. A simple low-energy effective model is presented to capture the salient physical feature of this topological material.
69 - H. P. Wang , Wei Luo , 2017
Quantum anomalous Hall (QAH) insulator is a topological phase which exhibits chiral edge states in the absence of magnetic field. The celebrated Haldane model is the first example of QAH effect, but difficult to realize. Here, we predict the two-dime nsional single-atomic-layer V2O3 with a honeycomb-Kagome structure is a QAH insulator with a large band gap (large than 0.1 eV) and a high ferromagnetic Curie temperature (about 900 K). Combining the first-principle calculations with the effective Hamiltonian analysis, we find that the spin-majority dxy and dyz orbitals of V atoms on the honeycomb lattice form a massless Dirac cone near the Fermi level which becomes massive when the on-site spin-orbit coupling is included. Interestingly, we find that the large band gap is caused by a cooperative effect of electron correlation and spin-orbit coupling. Both first-principle calculations and the effective Hamiltonian analysis confirm that 2D V2O3 has a non-zero Chern number (i.e., one). Our work paves a new direction towards realizing the QAH effect at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا