ترغب بنشر مسار تعليمي؟ اضغط هنا

Interface-induced anomalous Nernst effect in Fe3O4/Pt-based heterostructures

94   0   0.0 ( 0 )
 نشر من قبل Rafael Ramos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the anomalous Nernst effect (ANE) in [Fe3O4/Pt]-based heterostructures, by measuring the ANE-induced electric field with a magnetic field applied normal to the sample surface, in the perpendicular magnetized configuration, where only the ANE is expected. An ANE voltage is observed for [Fe3O4/Pt]n multilayers, and we further investigated its origin by performing measurements in [Fe3O4/Pt/Fe3O4] trilayers as a function of the Pt thickness. Our results suggest the presence of an interface-induced ANE. Despite of this ANE, the spin Seebeck effect is the dominant mechanism for the transverse thermoelectric voltage in the in-plane magnetized configuration, accounting for about 70 % of the measured voltage in the multilayers.



قيم البحث

اقرأ أيضاً

91 - T. Seki , Y. Sakuraba , K. Masuda 2020
We report an enhancement of the anomalous Nernst effect (ANE) in Ni/Pt (001) epitaxial superlattices. The transport and magneto-thermoelectric properties were investigated for the Ni/Pt superlattices with various Ni layer thicknesses (${it t}$). The anomalous Nernst coefficient was increased up to more than 1 ${mu}$V K$^{-1}$ for 2.0 nm ${leq}$ ${it t}$ ${leq}$ 4.0 nm, which was the remarkable enhancement compared to the bulk Ni. It has been found that the large transverse Peltier coefficient (${alpha}$$_{xy}$), reaching ${alpha}$$_{xy}$ = 4.8 A K$^{-1}$ m$^{-1}$ for ${it t}$ = 4.0 nm, plays a prime role for the enhanced ANE of the Ni/Pt (001) superlattices.
We present galvanomagnetic and thermoelectric transport measurements on signle-crystal MnBi, a rare-earth-free high-temperature permanent magnet material, along different crystallographic directions, and in particular the anomalous Nernst effect in b oth the in-plane and cross-plane directions. The cross-plane anomalous Nernst thermopower reaches 8 uV/K at 0.4 T applied field. The anomalous Hall effect also has been measured for both in-plane and cross-plane directions, with opposite signs along different orientations. We attribute this large anomalous Nernst effect to a combination of an intrinsic contribution from the Berry curvature and a new advective magnon contribution arising from magnon-electron spin-angular momentum transfer, which can be viewed as a self-spin Seebeck effect.
The anomalous Nernst effect (ANE) - the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets - is an appealing approach for thermoelectric power generation in spin caloritronics. Th e ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin order-dependent ANE in noncollinear antiferromagnetic Mn-based antiperovskite nitrides Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The ANE in Mn$_{3}X$N is forbidden by symmetry in the R1 phase but amounts to its maximum value in the R3 phase. Among all Mn$_{3}X$N compounds, Mn$_{3}$NiN presents the most significant anomalous Nernst conductivity of 1.80 AK$^{-1}$m$^{-1}$ at 200 K, which can be further enhanced if strain, electric, or magnetic fields are applied. The ANE in Mn$_{3}$NiN, being one order of magnitude larger than that in the famous Mn$_{3}$Sn, is the largest one discovered in antiferromagnets so far. The giant ANE in Mn$_{3}$NiN originates from the sharp slope of the anomalous Hall conductivity at the Fermi energy, which can be understood well from the Mott relation. Our findings provide a novel host material for realizing antiferromagnetic spin caloritronics which promises exciting applications in energy conversion and information processing.
133 - Yang Ma , Yu Yun , Yuehui Li 2019
The experimental observation of quantum anomalous Hall effect (QAHE) in magnetic topological insulators has stimulated enormous interest in condensed-matter physics and materials science. For the purpose of realizing high-temperature QAHE, several ma terial candidates have been proposed, among which the interface states in the CdO/ferromagnetic insulator heterostructures are particularly interesting and favorable for technological applications. Here, we report the experimental observation of the interfacial ferromagnetism and anomalous Hall effect in the Fe3O4/CdO/Fe3O4 heterostructures grown via oxide molecular-beam epitaxy. Systematical variation of the CdO thickness reveals the interface ferromagnetism as the major cause for the observed planar magnetoresistance and anomalous Hall effect. Our results might pave the way to engineer oxide interface states for the exploration of QAHE towards exotic quantum-physical phenomena and potential applications.
Thermoelectric properties of a model Skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transvers e thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among Skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا