ترغب بنشر مسار تعليمي؟ اضغط هنا

Rates and Properties of Strongly Gravitationally Lensed Supernovae and their Host Galaxies in Time-Domain Imaging Surveys

143   0   0.0 ( 0 )
 نشر من قبل Daniel Goldstein
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

Cadenced optical imaging surveys in the next decade will be capable of detecting time-varying galaxy-scale strong gravitational lenses in large numbers, increasing the size of the statistically well-defined samples of multiply-imaged quasars by two o rders of magnitude, and discovering the first strongly-lensed supernovae. We carry out a detailed calculation of the likely yields of several planned surveys, using realistic distributions for the lens and source properties and taking magnification bias and image configuration detectability into account. We find that upcoming wide-field synoptic surveys should detect several thousand lensed quasars. In particular, the LSST should find 8000 lensed quasars, 3000 of which will have well-measured time delays, and also ~130 lensed supernovae, which is compared with ~15 lensed supernovae predicted to be found by the JDEM. We predict the quad fraction to be ~15% for the lensed quasars and ~30% for the lensed supernovae. Generating a mock catalogue of around 1500 well-observed double-image lenses, we compute the available precision on the Hubble constant and the dark energy equation parameters for the time delay distance experiment (assuming priors from Planck): the predicted marginalised 68% confidence intervals are sigma(w_0)=0.15, sigma(w_a)=0.41, and sigma(h)=0.017. While this is encouraging in the sense that these uncertainties are only 50% larger than those predicted for a space-based type-Ia supernova sample, we show how the dark energy figure of merit degrades with decreasing knowledge of the the lens mass distribution. (Abridged)
Observations of high-redshift quasars provide information on the massive black holes (MBHs) powering them and the galaxies hosting them. Current observations of $z gtrsim 6$ hosts, at sub-mm wavelengths, trace the properties of cold gas, and these ar e used to compare with the correlations between MBHs and galaxies characterising the $z=0$ population. The relations at $z=0$, however, rely on stellar-based tracers of the galaxy properties. We perform a very-high resolution cosmological zoom-in simulation of a $z=7$ quasar including state-of-the-art non-equilibrium chemistry, MBH formation, growth and feedback, to assess the evolution of the galaxy host and the central MBH, and compare the results with recent ALMA observations of high-redshift quasars. We measure both the stellar-based quantities used to establish the $z=0$ correlations, as well as the gas-based quantities available in $z gtrsim 6$ observations, adopting the same assumptions and techniques used in observational studies. The high-redshift studies argued that MBHs at high redshift deviate from the local MBH-galaxy correlations. In our analysis of the single galaxy we evolve, we find that the high-redshift population sits on the same correlations as the local one, when using the same tracers used at $z=0$. When using the gas-based tracers, however, MBHs appear to be over-massive. The discrepancy between local and high-redshift MBHs seems caused by the different tracers employed, and necessary assumptions, and not by an intrinsic difference. Better calibration of the tracers, higher resolution data and availability of facilities that can probe the stellar population will be crucial to assess precisely and accurately high-redshift quasar hosts.
We present spectroscopic confirmation of three new two-image gravitationally lensed quasars, compiled from existing strong lens and X-ray catalogs. Images of HSC J091843.27$-$022007.5 show a red galaxy with two blue point sources at either side, sepa rated by 2.26 arcsec. This system has a source and a lens redshifts $z_s=0.804$ and $z_{ell}=0.459$, respectively, as obtained by our follow-up spectroscopic data. CXCO J100201.50$+$020330.0 shows two point sources separated by 0.85 arcsec on either side of an early-type galaxy. The follow-up spectroscopic data confirm the fainter quasar has the same redshift with the brighter quasar from the SDSS fiber spectrum at $z_s=2.016$. The deflecting foreground galaxy is a typical early-type galaxy at a redshift of $z_{ell}=0.439$. SDSS J135944.21$+$012809.8 has two point sources with quasar spectra at the same redshift $z_s=1.096$, separated by 1.05 arcsec, and fits to the HSC images confirm the presence of a galaxy between these. These discoveries demonstrate the power of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP)s deep imaging and wide sky coverage. Combined with existing X-ray source catalogues and follow-up spectroscopy, the HSC-SSP provides us unique opportunities to find multiple-image quasars lensed by a foreground galaxy.
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts $(zgtrsim 2)$, probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $Omega_ m$ via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. AGN, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse supernovae will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that LSST can discover up to 500 multiply imaged SNe Ia using this technique in a 10-year $z$-band search, more than an order of magnitude improvement over previous estimates (Oguri & Marshall 2010). We also predict that ZTF should find up to 10 multiply imaged SNe Ia using this technique in a 3-year $R$-band search---despite the fact that this survey will not resolve a single system.
We present an analysis of the galactocentric distributions of the normal and peculiar 91bg-like subclasses of 109 supernovae (SNe) Ia, and study the global parameters of their elliptical hosts. The galactocentric distributions of the SN subclasses ar e consistent with each other, and with the radial light distribution of host stellar populations, when excluding bias against central SNe. Among the global parameters, only the distributions of u-r colours and ages are inconsistent significantly between the ellipticals of different SN Ia subclasses: the normal SN hosts are on average bluer/younger than those of 91bg-like SNe. In the colour-mass diagram, the tail of colour distribution of normal SN hosts stretches into the Green Valley - transitional state of galaxy evolution, while the same tail of 91bg-like SN hosts barely reaches that region. Therefore, the bluer/younger ellipticals might have more residual star formation that gives rise to younger prompt progenitors, resulting in normal SNe Ia with shorter delay times. The redder and older ellipticals that already exhausted their gas for star formation may produce significantly less normal SNe with shorter delay times, outnumbered by delayed 91bg-like events. The host ages (lower age limit of the delay times) of 91bg-like SNe does not extend down to the stellar ages that produce significant u-band fluxes - the 91bg-like events have no prompt progenitors. Our results favor SN Ia progenitor models such as He-ignited violent mergers that have the potential to explain the observed SN/host properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا